vos/ambiq-hal-sys/ambiq-sparkfun-sdk/mcu/apollo3p/hal/am_hal_ios.c
2022-10-23 23:45:43 -07:00

1151 lines
36 KiB
C

//*****************************************************************************
//
// am_hal_ios.c
//! @file
//!
//! @brief Functions for interfacing with the IO Slave module
//!
//! @addtogroup ios3p IO Slave (SPI/I2C)
//! @ingroup apollo3phal
//! @{
//
//*****************************************************************************
//*****************************************************************************
//
// Copyright (c) 2020, Ambiq Micro
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from this
// software without specific prior written permission.
//
// Third party software included in this distribution is subject to the
// additional license terms as defined in the /docs/licenses directory.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// This is part of revision 2.4.2 of the AmbiqSuite Development Package.
//
//*****************************************************************************
#include <stdint.h>
#include <stdbool.h>
#include "am_mcu_apollo.h"
#define AM_HAL_IOS_MAX_SW_FIFO_SIZE 1023
#define AM_HAL_MAGIC_IOS 0x123456
#define AM_HAL_IOS_CHK_HANDLE(h) ((h) && ((am_hal_handle_prefix_t *)(h))->s.bInit && (((am_hal_handle_prefix_t *)(h))->s.magic == AM_HAL_MAGIC_IOS))
//*****************************************************************************
//
// SRAM Buffer structure
//
//*****************************************************************************
am_hal_ios_buffer_t g_sSRAMBuffer;
//*****************************************************************************
//
// Private Types.
//
//*****************************************************************************
typedef struct
{
bool bValid;
uint32_t regFIFOCFG;
uint32_t regFIFOTHR;
uint32_t regCFG;
uint32_t regINTEN;
uint32_t regACCINTEN;
} am_hal_ios_register_state_t;
typedef struct
{
am_hal_handle_prefix_t prefix;
//
// Physical module number.
//
uint32_t ui32Module;
am_hal_ios_register_state_t registerState;
uint8_t *pui8FIFOBase;
uint8_t *pui8FIFOEnd;
uint8_t *pui8FIFOPtr;
uint8_t ui32HwFifoSize;
uint32_t ui32FifoBaseOffset;
} am_hal_ios_state_t;
//*****************************************************************************
//
// Forward declarations of static funcitons.
//
//*****************************************************************************
static void am_hal_ios_buffer_init(am_hal_ios_buffer_t *psBuffer,
void *pvArray, uint32_t ui32Bytes);
static void fifo_write(void *pHandle, uint8_t *pui8Data, uint32_t ui32NumBytes);
static uint32_t am_hal_ios_fifo_ptr_set(void *pHandle, uint32_t ui32Offset);
//*****************************************************************************
//
// Function-like macros.
//
//*****************************************************************************
#define am_hal_ios_buffer_empty(psBuffer) \
((psBuffer)->ui32Length == 0)
#define am_hal_ios_buffer_full(psBuffer) \
((psBuffer)->ui32Length == (psBuffer)->ui32Capacity)
#define am_hal_ios_buffer_data_left(psBuffer) \
((psBuffer)->ui32Length)
//*****************************************************************************
//
// Global Variables
//
//*****************************************************************************
volatile uint8_t * const am_hal_ios_pui8LRAM = (uint8_t *)REG_IOSLAVE_BASEADDR;
am_hal_ios_state_t g_IOShandles[AM_REG_IOSLAVE_NUM_MODULES];
//*****************************************************************************
//
// IOS power control function
//
//*****************************************************************************
uint32_t am_hal_ios_power_ctrl(void *pHandle,
am_hal_sysctrl_power_state_e ePowerState,
bool bRetainState)
{
am_hal_ios_state_t *pIOSState = (am_hal_ios_state_t*)pHandle;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if ( !AM_HAL_IOS_CHK_HANDLE(pHandle) )
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
//
// Decode the requested power state and update IOS operation accordingly.
//
switch (ePowerState)
{
case AM_HAL_SYSCTRL_WAKE:
if (bRetainState && !pIOSState->registerState.bValid)
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
//
// Enable power control.
//
am_hal_pwrctrl_periph_enable((am_hal_pwrctrl_periph_e)(AM_HAL_PWRCTRL_PERIPH_IOS + pIOSState->ui32Module));
if (bRetainState)
{
//
// Restore IOS registers
IOSLAVEn(pIOSState->ui32Module)->FIFOCFG = pIOSState->registerState.regFIFOCFG;
IOSLAVEn(pIOSState->ui32Module)->FIFOTHR = pIOSState->registerState.regFIFOTHR;
IOSLAVEn(pIOSState->ui32Module)->CFG = pIOSState->registerState.regCFG;
IOSLAVEn(pIOSState->ui32Module)->INTEN = pIOSState->registerState.regINTEN;
IOSLAVEn(pIOSState->ui32Module)->REGACCINTEN = pIOSState->registerState.regACCINTEN;
pIOSState->registerState.bValid = false;
}
break;
case AM_HAL_SYSCTRL_NORMALSLEEP:
case AM_HAL_SYSCTRL_DEEPSLEEP:
if (bRetainState)
{
// Save IOS Registers
pIOSState->registerState.regFIFOCFG = IOSLAVEn(pIOSState->ui32Module)->FIFOCFG;
pIOSState->registerState.regFIFOTHR = IOSLAVEn(pIOSState->ui32Module)->FIFOTHR;
pIOSState->registerState.regCFG = IOSLAVEn(pIOSState->ui32Module)->CFG;
pIOSState->registerState.regINTEN = IOSLAVEn(pIOSState->ui32Module)->INTEN;
pIOSState->registerState.regACCINTEN = IOSLAVEn(pIOSState->ui32Module)->REGACCINTEN;
pIOSState->registerState.bValid = true;
}
//
// Disable power control.
//
am_hal_pwrctrl_periph_disable((am_hal_pwrctrl_periph_e)(AM_HAL_PWRCTRL_PERIPH_IOS + pIOSState->ui32Module));
break;
default:
return AM_HAL_STATUS_INVALID_ARG;
}
//
// Return the status.
//
return AM_HAL_STATUS_SUCCESS;
} // am_hal_ios_power_ctrl()
//*****************************************************************************
//
// IOS uninitialize function
//
//*****************************************************************************
uint32_t am_hal_ios_uninitialize(void *pHandle)
{
am_hal_ios_state_t *pIOSState = (am_hal_ios_state_t*)pHandle;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOS_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
if (pIOSState->prefix.s.bEnable)
{
am_hal_ios_disable(pHandle);
}
pIOSState->prefix.s.bInit = false;
return AM_HAL_STATUS_SUCCESS;
} // am_hal_ios_uninitialize()
//*****************************************************************************
//
// IOS initialization function
//
//*****************************************************************************
uint32_t am_hal_ios_initialize(uint32_t ui32Module, void **ppHandle)
{
#ifndef AM_HAL_DISABLE_API_VALIDATION
//
// Validate the module number
//
if ( ui32Module >= AM_REG_IOSLAVE_NUM_MODULES )
{
return AM_HAL_STATUS_OUT_OF_RANGE;
}
if (ppHandle == NULL)
{
return AM_HAL_STATUS_INVALID_ARG;
}
if (g_IOShandles[ui32Module].prefix.s.bInit)
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
g_IOShandles[ui32Module].prefix.s.bInit = true;
g_IOShandles[ui32Module].prefix.s.bEnable = false;
g_IOShandles[ui32Module].prefix.s.magic = AM_HAL_MAGIC_IOS;
//
// Initialize the handle.
//
g_IOShandles[ui32Module].ui32Module = ui32Module;
//
// Return the handle.
//
*ppHandle = (void *)&g_IOShandles[ui32Module];
return AM_HAL_STATUS_SUCCESS;
} // am_hal_ios_initialize()
//*****************************************************************************
//
// IOS enable function
//
//*****************************************************************************
uint32_t am_hal_ios_enable(void *pHandle)
{
am_hal_ios_state_t *pIOSState = (am_hal_ios_state_t*)pHandle;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOS_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
if (pIOSState->prefix.s.bEnable)
{
return AM_HAL_STATUS_SUCCESS;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
IOSLAVEn(pIOSState->ui32Module)->CFG |= _VAL2FLD(IOSLAVE_CFG_IFCEN, 1);
pIOSState->prefix.s.bEnable = true;
return AM_HAL_STATUS_SUCCESS;
} // am_hal_ios_enable()
//*****************************************************************************
//
// IOS disable function
//
//*****************************************************************************
uint32_t am_hal_ios_disable(void *pHandle)
{
am_hal_ios_state_t *pIOSState = (am_hal_ios_state_t*)pHandle;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOS_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
if (!pIOSState->prefix.s.bEnable)
{
return AM_HAL_STATUS_SUCCESS;
}
IOSLAVEn(pIOSState->ui32Module)->CFG &= ~(_VAL2FLD(IOSLAVE_CFG_IFCEN, 1));
pIOSState->prefix.s.bEnable = false;
return AM_HAL_STATUS_SUCCESS;
} // am_hal_ios_disable()
//*****************************************************************************
//
// IOS configuration function.
//
//*****************************************************************************
uint32_t am_hal_ios_configure(void *pHandle, am_hal_ios_config_t *psConfig)
{
uint32_t ui32LRAMConfig = 0;
am_hal_ios_state_t *pIOSState = (am_hal_ios_state_t*)pHandle;
uint32_t ui32Module;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOS_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
//
// Validate the parameters
//
if ( (psConfig == NULL) ||
(pIOSState->ui32Module >= AM_REG_IOSLAVE_NUM_MODULES) )
{
return AM_HAL_STATUS_INVALID_ARG;
}
// Configure not allowed in Enabled state
if (pIOSState->prefix.s.bEnable)
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = pIOSState->ui32Module;
am_hal_pwrctrl_periph_enable(AM_HAL_PWRCTRL_PERIPH_IOS);
//
// Record the FIFO parameters for later use.
//
pIOSState->pui8FIFOBase = (uint8_t *)(REG_IOSLAVE_BASEADDR + psConfig->ui32FIFOBase);
pIOSState->pui8FIFOEnd = (uint8_t *)(REG_IOSLAVE_BASEADDR + psConfig->ui32RAMBase);
pIOSState->ui32HwFifoSize = pIOSState->pui8FIFOEnd - pIOSState->pui8FIFOBase;
pIOSState->ui32FifoBaseOffset = psConfig->ui32FIFOBase;
//
// Initialize the global SRAM buffer
// Total size, which is SRAM Buffer plus the hardware FIFO needs to be
// limited to 1023
//
if ( psConfig->ui32SRAMBufferCap > (AM_HAL_IOS_MAX_SW_FIFO_SIZE - pIOSState->ui32HwFifoSize + 1) )
{
psConfig->ui32SRAMBufferCap = (AM_HAL_IOS_MAX_SW_FIFO_SIZE - pIOSState->ui32HwFifoSize + 1);
}
am_hal_ios_buffer_init(&g_sSRAMBuffer, psConfig->pui8SRAMBuffer, psConfig->ui32SRAMBufferCap);
//
// Calculate the value for the IO Slave FIFO configuration register.
//
ui32LRAMConfig = _VAL2FLD(IOSLAVE_FIFOCFG_ROBASE, psConfig->ui32ROBase >> 3);
ui32LRAMConfig |= _VAL2FLD(IOSLAVE_FIFOCFG_FIFOBASE, psConfig->ui32FIFOBase >> 3);
ui32LRAMConfig |= _VAL2FLD(IOSLAVE_FIFOCFG_FIFOMAX, psConfig->ui32RAMBase >> 3);
//
// Just in case, disable the IOS
//
am_hal_ios_disable(pHandle);
//
// Write the configuration register with the user's selected interface
// characteristics.
//
IOSLAVEn(ui32Module)->CFG = psConfig->ui32InterfaceSelect;
//
// Write the FIFO configuration register to set the memory map for the LRAM.
//
IOSLAVEn(ui32Module)->FIFOCFG = ui32LRAMConfig;
//
// Clear the FIFO State
//
IOSLAVEn(pIOSState->ui32Module)->FIFOCTR_b.FIFOCTR = 0x0;
IOSLAVEn(pIOSState->ui32Module)->FIFOPTR_b.FIFOSIZ = 0x0;
am_hal_ios_fifo_ptr_set(pHandle, pIOSState->ui32FifoBaseOffset);
//
// Enable the IOS. The following configuration options can't be set while
// the IOS is disabled.
//
am_hal_ios_enable(pHandle);
//
// Initialize the FIFO pointer to the beginning of the FIFO section.
//
am_hal_ios_fifo_ptr_set(pHandle, psConfig->ui32FIFOBase);
//
// Write the FIFO threshold register.
//
IOSLAVEn(ui32Module)->FIFOTHR = psConfig->ui32FIFOThreshold;
return AM_HAL_STATUS_SUCCESS;
} // am_hal_ios_config()
//*****************************************************************************
//
// IOS enable interrupts function
//
//*****************************************************************************
uint32_t am_hal_ios_interrupt_enable(void *pHandle, uint32_t ui32IntMask)
{
uint32_t ui32Module;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOS_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = ((am_hal_ios_state_t*)pHandle)->ui32Module;
//
// OR the desired interrupt into the enable register.
//
IOSLAVEn(ui32Module)->INTEN |= ui32IntMask;
return AM_HAL_STATUS_SUCCESS;
} // am_hal_ios_int_enable()
//*****************************************************************************
//
// IOS disable interrupts function
//
//*****************************************************************************
uint32_t am_hal_ios_interrupt_disable(void *pHandle, uint32_t ui32IntMask)
{
uint32_t ui32Module;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOS_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = ((am_hal_ios_state_t*)pHandle)->ui32Module;
//
// Clear the desired bit from the interrupt enable register.
//
IOSLAVEn(ui32Module)->INTEN &= ~(ui32IntMask);
return AM_HAL_STATUS_SUCCESS;
} // am_hal_ios_int_disable()
//*****************************************************************************
//
// IOS interrupt clear
//
//*****************************************************************************
uint32_t am_hal_ios_interrupt_clear(void *pHandle, uint32_t ui32IntMask)
{
uint32_t ui32Module;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOS_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = ((am_hal_ios_state_t*)pHandle)->ui32Module;
//
// Use the interrupt clear register to deactivate the chosen interrupt.
//
IOSLAVEn(ui32Module)->INTCLR = ui32IntMask;
return AM_HAL_STATUS_SUCCESS;
} // am_hal_ios_int_clear()
//*****************************************************************************
//
// IOS get interrupt status
//
//*****************************************************************************
uint32_t am_hal_ios_interrupt_status_get(void *pHandle, bool bEnabledOnly,
uint32_t *pui32IntStatus)
{
uint32_t ui32IntStatus = 0;
uint32_t ui32Module;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if ( !AM_HAL_IOS_CHK_HANDLE(pHandle) )
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
if ( !pui32IntStatus )
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = ((am_hal_ios_state_t*)pHandle)->ui32Module;
ui32IntStatus = IOSLAVEn(ui32Module)->INTSTAT;
if ( bEnabledOnly )
{
ui32IntStatus &= IOSLAVEn(ui32Module)->INTEN;
}
*pui32IntStatus = ui32IntStatus;
return AM_HAL_STATUS_SUCCESS;
} // am_hal_ios_int_status_get()
//*****************************************************************************
//
//! @brief Check the amount of space used in the FIFO
//!
//! @param pui32UsedSpace is bytes used in the Overall FIFO.
//!
//! This function returns the available data in the overall FIFO yet to be
//! read by the host. This takes into account the SRAM buffer and hardware FIFO
//!
//! @return success or error code
//
//*****************************************************************************
uint32_t am_hal_ios_fifo_space_used(void *pHandle, uint32_t *pui32UsedSpace)
{
uint32_t ui32Module;
uint32_t ui32Val = 0;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOS_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
if ( !pui32UsedSpace )
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = ((am_hal_ios_state_t*)pHandle)->ui32Module;
//
// Start a critical section for thread safety.
//
AM_CRITICAL_BEGIN
ui32Val = g_sSRAMBuffer.ui32Length;
ui32Val += IOSLAVEn(ui32Module)->FIFOPTR_b.FIFOSIZ;
//
// End the critical section
//
AM_CRITICAL_END
*pui32UsedSpace = ui32Val;
return AM_HAL_STATUS_SUCCESS;
} // am_hal_ios_fifo_space_used()
//*****************************************************************************
//
//! @brief Check the amount of space left in the FIFO
//!
//! @param pui32LeftSpace is bytes left in the Overall FIFO.
//!
//! This function returns the available space in the overall FIFO to accept
//! new data. This takes into account the SRAM buffer and hardware FIFO
//!
//! @return success or error code
//
//*****************************************************************************
uint32_t am_hal_ios_fifo_space_left(void *pHandle, uint32_t *pui32LeftSpace)
{
uint32_t ui32Module;
uint32_t ui32Val = 0;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOS_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
if ( !pui32LeftSpace )
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = ((am_hal_ios_state_t*)pHandle)->ui32Module;
//
// Start a critical section for thread safety.
//
AM_CRITICAL_BEGIN
//
// We waste one byte in HW FIFO
//
ui32Val = g_sSRAMBuffer.ui32Capacity + ((am_hal_ios_state_t*)pHandle)->ui32HwFifoSize - 1;
ui32Val -= g_sSRAMBuffer.ui32Length;
ui32Val -= IOSLAVEn(ui32Module)->FIFOPTR_b.FIFOSIZ;
//
// End the critical section
//
AM_CRITICAL_END
*pui32LeftSpace = ui32Val;
return AM_HAL_STATUS_SUCCESS;
} // am_hal_ios_fifo_space_left()
//*****************************************************************************
//
//! @brief Check the amount of space left in the hardware FIFO
//!
//! @param pui32LeftSpace is bytes left in the IOS FIFO.
//!
//! This function reads the IOSLAVE FIFOPTR register and determines the amount
//! of space left in the IOS LRAM FIFO.
//!
//! @return success or error code
//
//*****************************************************************************
static uint32_t fifo_space_left(void *pHandle, uint32_t *pui32LeftSpace)
{
uint32_t ui32Module;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOS_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
if ( !pui32LeftSpace )
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = ((am_hal_ios_state_t*)pHandle)->ui32Module;
//
// We waste one byte in HW FIFO
//
*pui32LeftSpace = ((uint32_t)((am_hal_ios_state_t*)pHandle)->ui32HwFifoSize - IOSLAVEn(ui32Module)->FIFOPTR_b.FIFOSIZ - 1);
return AM_HAL_STATUS_SUCCESS;
} // fifo_space_left()
//*****************************************************************************
//
// Helper function for managing IOS FIFO writes.
//
//*****************************************************************************
static void fifo_write(void *pHandle, uint8_t *pui8Data, uint32_t ui32NumBytes)
{
am_hal_ios_state_t *pIOSState = (am_hal_ios_state_t*)pHandle;
uint8_t *pFifoPtr = pIOSState->pui8FIFOPtr;
uint8_t *pFifoBase = pIOSState->pui8FIFOBase;
uint8_t *pFifoEnd = pIOSState->pui8FIFOEnd;
while ( ui32NumBytes )
{
//
// Write the data to the FIFO
//
*pFifoPtr++ = *pui8Data++;
ui32NumBytes--;
//
// Make sure to wrap the FIFO pointer if necessary.
//
if ( pFifoPtr == pFifoEnd )
{
pFifoPtr = pFifoBase;
}
}
pIOSState->pui8FIFOPtr = pFifoPtr;
} // fifo_write()
//*****************************************************************************
//
// IOS interrupt service routine
//
//*****************************************************************************
uint32_t am_hal_ios_interrupt_service(void *pHandle, uint32_t ui32IntMask)
{
uint32_t thresh;
uint32_t freeSpace, usedSpace, chunk1, chunk2, ui32WriteIndex;
uint32_t ui32Module;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOS_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = ((am_hal_ios_state_t*)pHandle)->ui32Module;
//
// Check for FIFO size interrupts.
//
if ( ui32IntMask & AM_HAL_IOS_INT_FSIZE )
{
thresh = IOSLAVEn(ui32Module)->FIFOTHR_b.FIFOTHR;
//
// While the FIFO is at or below threshold Add more data
// If Fifo level is above threshold, we're guaranteed an FSIZ interrupt
//
while ( g_sSRAMBuffer.ui32Length &&
((usedSpace = IOSLAVEn(ui32Module)->FIFOPTR_b.FIFOSIZ) <= thresh) )
{
//
// So, we do have some data in SRAM which needs to be moved to FIFO.
// A chunk of data is a continguous set of bytes in SRAM that can be
// written to FIFO. Determine the chunks of data from SRAM that can
// be written. Up to two chunks possible
//
ui32WriteIndex = g_sSRAMBuffer.ui32WriteIndex;
chunk1 = ((ui32WriteIndex > (uint32_t)g_sSRAMBuffer.ui32ReadIndex) ? \
(ui32WriteIndex - (uint32_t)g_sSRAMBuffer.ui32ReadIndex) : \
(g_sSRAMBuffer.ui32Capacity - (uint32_t)g_sSRAMBuffer.ui32ReadIndex));
chunk2 = g_sSRAMBuffer.ui32Length - chunk1;
// We waste one byte in HW FIFO
freeSpace = ((am_hal_ios_state_t*)pHandle)->ui32HwFifoSize - usedSpace - 1;
// Write data in chunks
// Determine the chunks of data from SRAM that can be written
if ( chunk1 > freeSpace )
{
fifo_write(pHandle, (uint8_t *)(g_sSRAMBuffer.pui8Data + g_sSRAMBuffer.ui32ReadIndex), freeSpace);
//
// Advance the read index, wrapping if needed.
//
g_sSRAMBuffer.ui32ReadIndex += freeSpace;
// No need to check for wrap as we wrote less than chunk1
//
// Adjust the length value to reflect the change.
//
g_sSRAMBuffer.ui32Length -= freeSpace;
}
else
{
fifo_write(pHandle, (uint8_t *)(g_sSRAMBuffer.pui8Data + g_sSRAMBuffer.ui32ReadIndex), chunk1);
//
// Update the read index - wrapping as needed
//
g_sSRAMBuffer.ui32ReadIndex += chunk1;
g_sSRAMBuffer.ui32ReadIndex %= g_sSRAMBuffer.ui32Capacity;
//
// Adjust the length value to reflect the change.
//
g_sSRAMBuffer.ui32Length -= chunk1;
freeSpace -= chunk1;
if ( freeSpace && chunk2 )
{
if ( chunk2 > freeSpace )
{
fifo_write(pHandle, (uint8_t *)(g_sSRAMBuffer.pui8Data + g_sSRAMBuffer.ui32ReadIndex), freeSpace);
//
// Advance the read index, wrapping if needed.
//
g_sSRAMBuffer.ui32ReadIndex += freeSpace;
// No need to check for wrap in chunk2
//
// Adjust the length value to reflect the change.
//
g_sSRAMBuffer.ui32Length -= freeSpace;
}
else
{
fifo_write(pHandle, (uint8_t *)(g_sSRAMBuffer.pui8Data + g_sSRAMBuffer.ui32ReadIndex), chunk2);
//
// Advance the read index, wrapping if needed.
//
g_sSRAMBuffer.ui32ReadIndex += chunk2;
// No need to check for wrap in chunk2
//
// Adjust the length value to reflect the change.
//
g_sSRAMBuffer.ui32Length -= chunk2;
}
}
}
//
// Need to retake the FIFO space, after Threshold interrupt has been reenabled
// Clear any spurious FSIZE interrupt that might have got raised
//
IOSLAVEn(ui32Module)->INTCLR_b.FSIZE = 1;
}
}
return AM_HAL_STATUS_SUCCESS;
} // am_hal_ios_fifo_service()
//*****************************************************************************
//
//! @brief Writes the specified number of bytes to the IOS fifo.
//!
//! @param pui8Data is a pointer to the data to be written to the fifo.
//! @param ui32NumBytes is the number of bytes to send.
//! @param pui32WrittenBytes is number of bytes written (could be less than ui32NumBytes, if not enough space)
//!
//! This function will write data from the caller-provided array to the IOS
//! LRAM FIFO. If there is no space in the LRAM FIFO, the data will be copied
//! to a temporary SRAM buffer instead.
//!
//! The maximum message size for the IO Slave is 1023 bytes.
//!
//! @note In order for SRAM copy operations in the function to work correctly,
//! the \e am_hal_ios_buffer_service() function must be called in the ISR for
//! the ioslave module.
//!
//! @return success or error code
//
//*****************************************************************************
uint32_t am_hal_ios_fifo_write(void *pHandle, uint8_t *pui8Data, uint32_t ui32NumBytes, uint32_t *pui32WrittenBytes)
{
uint32_t ui32FIFOSpace = 0;
uint32_t ui32SRAMSpace;
uint32_t ui32SRAMLength;
uint32_t totalBytes = ui32NumBytes;
uint32_t ui32Module;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOS_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
if ( !pui8Data || !pui32WrittenBytes)
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = ((am_hal_ios_state_t*)pHandle)->ui32Module;
//
// This operation will only work properly if an SRAM buffer has been
// allocated. Make sure that am_hal_ios_fifo_buffer_init() has been called,
// and the buffer pointer looks valid.
//
am_hal_debug_assert(g_sSRAMBuffer.pui8Data != 0);
if ( ui32NumBytes == 0 )
{
*pui32WrittenBytes = 0;
}
else
{
//
// Start a critical section for thread safety.
//
AM_CRITICAL_BEGIN
ui32SRAMLength = g_sSRAMBuffer.ui32Length;
//
// End the critical section
//
AM_CRITICAL_END
//
// If the SRAM buffer is empty, we should just write directly to the FIFO.
//
if ( ui32SRAMLength == 0 )
{
fifo_space_left(pHandle, &ui32FIFOSpace);
//
// If the whole message fits, send it now.
//
if ( ui32NumBytes <= ui32FIFOSpace )
{
fifo_write(pHandle, pui8Data, ui32NumBytes);
ui32NumBytes = 0;
}
else
{
fifo_write(pHandle, pui8Data, ui32FIFOSpace);
ui32NumBytes -= ui32FIFOSpace;
pui8Data += ui32FIFOSpace;
}
}
//
// If there's still data, write it to the SRAM buffer.
//
if ( ui32NumBytes )
{
uint32_t idx, writeIdx, capacity, fifoSize;
ui32SRAMSpace = g_sSRAMBuffer.ui32Capacity - ui32SRAMLength;
writeIdx = g_sSRAMBuffer.ui32WriteIndex;
capacity = g_sSRAMBuffer.ui32Capacity;
//
// Make sure that the data will fit inside the SRAM buffer.
//
if ( ui32SRAMSpace > ui32NumBytes )
{
ui32SRAMSpace = ui32NumBytes;
}
//
// If the data will fit, write it to the SRAM buffer.
//
for ( idx = 0; idx < ui32SRAMSpace; idx++ )
{
g_sSRAMBuffer.pui8Data[(idx + writeIdx) % capacity] = pui8Data[idx];
}
ui32NumBytes -= idx;
//
// Start a critical section for thread safety before updating length & wrIdx.
//
AM_CRITICAL_BEGIN
//
// Advance the write index, making sure to wrap if necessary.
//
g_sSRAMBuffer.ui32WriteIndex = (idx + writeIdx) % capacity;
//
// Update the length value appropriately.
//
g_sSRAMBuffer.ui32Length += idx;
//
// End the critical section
//
AM_CRITICAL_END
// It is possible that there is a race condition that the FIFO level has
// gone below the threshold by the time we set the wrIdx above, and hence
// we may never get the threshold interrupt to serve the SRAM data we
// just wrote
// If that is the case, explicitly generate the FSIZE interrupt from here
fifoSize = IOSLAVEn(ui32Module)->FIFOPTR_b.FIFOSIZ;
if ( fifoSize <= IOSLAVEn(ui32Module)->FIFOTHR_b.FIFOTHR )
{
IOSLAVEn(ui32Module)->INTSET_b.FSIZE = 1;
}
}
*pui32WrittenBytes = totalBytes - ui32NumBytes;
}
return AM_HAL_STATUS_SUCCESS;
} // am_hal_ios_fifo_write()
//*****************************************************************************
//
//! @brief Sets the IOS FIFO pointer to the specified LRAM offset.
//!
//! @param ui32Offset is LRAM offset to set the FIFO pointer to.
//!
//! @return success or error code
//
//*****************************************************************************
static uint32_t am_hal_ios_fifo_ptr_set(void *pHandle, uint32_t ui32Offset)
{
uint32_t ui32Module;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOS_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = ((am_hal_ios_state_t*)pHandle)->ui32Module;
//
// Start a critical section for thread safety.
//
AM_CRITICAL_BEGIN
//
// Set the FIFO Update bit.
//
IOSLAVEn(ui32Module)->FUPD = 0x1;
//
// Change the FIFO offset.
//
IOSLAVEn(ui32Module)->FIFOPTR = ui32Offset;
//
// Clear the FIFO update bit.
//
IOSLAVEn(ui32Module)->FUPD = 0x0;
//
// Set the global FIFO-pointer tracking variable.
//
((am_hal_ios_state_t*)pHandle)->pui8FIFOPtr = (uint8_t *) (REG_IOSLAVE_BASEADDR + ui32Offset);
//
// End the critical section.
//
AM_CRITICAL_END
return AM_HAL_STATUS_SUCCESS;
} // am_hal_ios_fifo_ptr_set()
//*****************************************************************************
//
// Initialize an SRAM buffer for use with the IO Slave.
//
//*****************************************************************************
static void am_hal_ios_buffer_init(am_hal_ios_buffer_t *psBuffer, void *pvArray,
uint32_t ui32Bytes)
{
psBuffer->ui32WriteIndex = 0;
psBuffer->ui32ReadIndex = 0;
psBuffer->ui32Length = 0;
psBuffer->ui32Capacity = ui32Bytes;
psBuffer->pui8Data = (uint8_t *)pvArray;
} // am_hal_ios_buffer_init()
//*****************************************************************************
//
//! @brief IOS control function
//!
//! @param handle - handle for the IOS.
//! @param eReq - device specific special request code.
//! @param pArgs - pointer to the request specific arguments.
//!
//! This function allows advanced settings
//!
//! @return success or error code
//
//*****************************************************************************
uint32_t am_hal_ios_control(void *pHandle, am_hal_ios_request_e eReq, void *pArgs)
{
am_hal_ios_state_t *pIOSState = (am_hal_ios_state_t*)pHandle;
uint32_t ui32Val = 0;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOS_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
//
// Validate the parameters
//
if ((eReq < AM_HAL_IOS_REQ_ARG_MAX) && (NULL == pArgs))
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
switch (eReq)
{
case AM_HAL_IOS_REQ_HOST_INTSET:
IOSLAVEn(pIOSState->ui32Module)->IOINTCTL = _VAL2FLD(IOSLAVE_IOINTCTL_IOINTSET, *((uint32_t *)pArgs));
break;
case AM_HAL_IOS_REQ_HOST_INTCLR:
IOSLAVEn(pIOSState->ui32Module)->IOINTCTL = _VAL2FLD(IOSLAVE_IOINTCTL_IOINTCLR, *((uint32_t *)pArgs));
break;
case AM_HAL_IOS_REQ_HOST_INTGET:
*((uint32_t*)pArgs) = IOSLAVEn(pIOSState->ui32Module)->IOINTCTL_b.IOINT;
break;
case AM_HAL_IOS_REQ_HOST_INTEN_GET:
*((uint32_t*)pArgs) = IOSLAVEn(pIOSState->ui32Module)->IOINTCTL_b.IOINTEN;
break;
case AM_HAL_IOS_REQ_READ_GADATA:
*((uint32_t*)pArgs) = IOSLAVEn(pIOSState->ui32Module)->GENADD_b.GADATA;
break;
case AM_HAL_IOS_REQ_READ_POLL:
while ( IOSLAVEn(pIOSState->ui32Module)->FUPD & IOSLAVE_FUPD_IOREAD_Msk );
break;
case AM_HAL_IOS_REQ_FIFO_UPDATE_CTR:
am_hal_ios_fifo_space_used(pHandle, &ui32Val);
IOSLAVEn(pIOSState->ui32Module)->FIFOCTR_b.FIFOCTR = ui32Val;
break;
case AM_HAL_IOS_REQ_FIFO_BUF_CLR:
am_hal_ios_buffer_init(&g_sSRAMBuffer, NULL, 0);
//
// Clear the FIFO State
//
IOSLAVEn(pIOSState->ui32Module)->FIFOCTR_b.FIFOCTR = 0x0;
IOSLAVEn(pIOSState->ui32Module)->FIFOPTR_b.FIFOSIZ = 0x0;
break;
case AM_HAL_IOS_REQ_MAX:
return AM_HAL_STATUS_INVALID_ARG;
}
return AM_HAL_STATUS_SUCCESS;
}
//*****************************************************************************
//
// End the doxygen group
//! @}
//
//*****************************************************************************