vos/ambiq-hal-sys/ambiq-sparkfun-sdk/ambiq_ble/profiles/volecommon/codec/sbc/sbc.c
2022-10-23 23:45:43 -07:00

2669 lines
76 KiB
C

/*
*
* Bluetooth low-complexity, subband codec (SBC) library
*
* Copyright (C) 2008-2010 Nokia Corporation
* Copyright (C) 2004-2010 Marcel Holtmann <marcel@holtmann.org>
* Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
* Copyright (C) 2005-2008 Brad Midgley <bmidgley@xmission.com>
* Copyright (C) 2012-2013 Intel Corporation
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
//#include <config.h>
#endif
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
//#include <sys/types.h>
#include <limits.h>
//#include <fcntl.h>
//#include <sys/stat.h>
#include "sbc.h"
typedef unsigned char bool;
#define true 1
#define false 0
#define EIO 5
#define ENOMEM 12
#define ENOSPC 28
#define SBC_SYNCWORD 0x9C
#define MSBC_SYNCWORD 0xAD
#define MSBC_BLOCKS 15
#define A2DP_SAMPLING_FREQ_16000 (1 << 3)
#define A2DP_SAMPLING_FREQ_32000 (1 << 2)
#define A2DP_SAMPLING_FREQ_44100 (1 << 1)
#define A2DP_SAMPLING_FREQ_48000 (1 << 0)
#define A2DP_CHANNEL_MODE_MONO (1 << 3)
#define A2DP_CHANNEL_MODE_DUAL_CHANNEL (1 << 2)
#define A2DP_CHANNEL_MODE_STEREO (1 << 1)
#define A2DP_CHANNEL_MODE_JOINT_STEREO (1 << 0)
#define A2DP_BLOCK_LENGTH_4 (1 << 3)
#define A2DP_BLOCK_LENGTH_8 (1 << 2)
#define A2DP_BLOCK_LENGTH_12 (1 << 1)
#define A2DP_BLOCK_LENGTH_16 (1 << 0)
#define A2DP_SUBBANDS_4 (1 << 1)
#define A2DP_SUBBANDS_8 (1 << 0)
#define A2DP_ALLOCATION_SNR (1 << 1)
#define A2DP_ALLOCATION_LOUDNESS (1 << 0)
#if __BYTE_ORDER == __LITTLE_ENDIAN
#pragma pack(1)
struct a2dp_sbc
{
uint8_t channel_mode:4;
uint8_t frequency:4;
uint8_t allocation_method:2;
uint8_t subbands:2;
uint8_t block_length:4;
uint8_t min_bitpool;
uint8_t max_bitpool;
}; // __attribute__ ((packed));
#pragma pack()
#elif __BYTE_ORDER == __BIG_ENDIAN
struct a2dp_sbc
{
uint8_t frequency:4;
uint8_t channel_mode:4;
uint8_t block_length:4;
uint8_t subbands:2;
uint8_t allocation_method:2;
uint8_t min_bitpool;
uint8_t max_bitpool;
} __attribute__ ((packed));
#else
#error "Unknown byte order"
#endif
enum SBC_MODE
{
MONO = SBC_MODE_MONO,
DUAL_CHANNEL = SBC_MODE_DUAL_CHANNEL,
STEREO = SBC_MODE_STEREO,
JOINT_STEREO = SBC_MODE_JOINT_STEREO
} ;
enum SBC_ALLOCATION
{
LOUDNESS = SBC_AM_LOUDNESS,
SNR = SBC_AM_SNR
};
/* This structure contains an unpacked SBC frame.
Yes, there is probably quite some unused space herein */
struct sbc_frame
{
uint8_t frequency;
uint8_t block_mode;
uint8_t blocks;
int mode;
uint8_t channels;
int allocation;
uint8_t subband_mode;
uint8_t subbands;
uint8_t bitpool;
uint16_t codesize;
uint16_t length;
/* bit number x set means joint stereo has been used in subband x */
uint8_t joint;
/* only the lower 4 bits of every element are to be used */
uint32_t SBC_ALIGNED scale_factor[2][8];
/* raw integer subband samples in the frame */
int32_t SBC_ALIGNED sb_sample_f[16][2][8];
/* modified subband samples */
int32_t SBC_ALIGNED sb_sample[16][2][8];
/* original pcm audio samples */
int16_t SBC_ALIGNED pcm_sample[2][16*8];
};
struct sbc_decoder_state
{
int subbands;
int32_t V[2][170];
int offset[2][16];
};
/*
* Calculates the CRC-8 of the first len bits in data
*/
static const uint8_t crc_table[256] = {
0x00, 0x1D, 0x3A, 0x27, 0x74, 0x69, 0x4E, 0x53,
0xE8, 0xF5, 0xD2, 0xCF, 0x9C, 0x81, 0xA6, 0xBB,
0xCD, 0xD0, 0xF7, 0xEA, 0xB9, 0xA4, 0x83, 0x9E,
0x25, 0x38, 0x1F, 0x02, 0x51, 0x4C, 0x6B, 0x76,
0x87, 0x9A, 0xBD, 0xA0, 0xF3, 0xEE, 0xC9, 0xD4,
0x6F, 0x72, 0x55, 0x48, 0x1B, 0x06, 0x21, 0x3C,
0x4A, 0x57, 0x70, 0x6D, 0x3E, 0x23, 0x04, 0x19,
0xA2, 0xBF, 0x98, 0x85, 0xD6, 0xCB, 0xEC, 0xF1,
0x13, 0x0E, 0x29, 0x34, 0x67, 0x7A, 0x5D, 0x40,
0xFB, 0xE6, 0xC1, 0xDC, 0x8F, 0x92, 0xB5, 0xA8,
0xDE, 0xC3, 0xE4, 0xF9, 0xAA, 0xB7, 0x90, 0x8D,
0x36, 0x2B, 0x0C, 0x11, 0x42, 0x5F, 0x78, 0x65,
0x94, 0x89, 0xAE, 0xB3, 0xE0, 0xFD, 0xDA, 0xC7,
0x7C, 0x61, 0x46, 0x5B, 0x08, 0x15, 0x32, 0x2F,
0x59, 0x44, 0x63, 0x7E, 0x2D, 0x30, 0x17, 0x0A,
0xB1, 0xAC, 0x8B, 0x96, 0xC5, 0xD8, 0xFF, 0xE2,
0x26, 0x3B, 0x1C, 0x01, 0x52, 0x4F, 0x68, 0x75,
0xCE, 0xD3, 0xF4, 0xE9, 0xBA, 0xA7, 0x80, 0x9D,
0xEB, 0xF6, 0xD1, 0xCC, 0x9F, 0x82, 0xA5, 0xB8,
0x03, 0x1E, 0x39, 0x24, 0x77, 0x6A, 0x4D, 0x50,
0xA1, 0xBC, 0x9B, 0x86, 0xD5, 0xC8, 0xEF, 0xF2,
0x49, 0x54, 0x73, 0x6E, 0x3D, 0x20, 0x07, 0x1A,
0x6C, 0x71, 0x56, 0x4B, 0x18, 0x05, 0x22, 0x3F,
0x84, 0x99, 0xBE, 0xA3, 0xF0, 0xED, 0xCA, 0xD7,
0x35, 0x28, 0x0F, 0x12, 0x41, 0x5C, 0x7B, 0x66,
0xDD, 0xC0, 0xE7, 0xFA, 0xA9, 0xB4, 0x93, 0x8E,
0xF8, 0xE5, 0xC2, 0xDF, 0x8C, 0x91, 0xB6, 0xAB,
0x10, 0x0D, 0x2A, 0x37, 0x64, 0x79, 0x5E, 0x43,
0xB2, 0xAF, 0x88, 0x95, 0xC6, 0xDB, 0xFC, 0xE1,
0x5A, 0x47, 0x60, 0x7D, 0x2E, 0x33, 0x14, 0x09,
0x7F, 0x62, 0x45, 0x58, 0x0B, 0x16, 0x31, 0x2C,
0x97, 0x8A, 0xAD, 0xB0, 0xE3, 0xFE, 0xD9, 0xC4
};
static uint8_t sbc_crc8(const uint8_t *data, size_t len)
{
uint8_t crc = 0x0f;
size_t i;
uint8_t octet;
for (i = 0; i < len / 8; i++)
{
crc = crc_table[crc ^ data[i]];
}
octet = data[i];
for (i = 0; i < len % 8; i++)
{
char bit = ((octet ^ crc) & 0x80) >> 7;
crc = ((crc & 0x7f) << 1) ^ (bit ? 0x1d : 0);
octet = octet << 1;
}
return crc;
}
#define BUF_SIZE 8192
#define APP_WAVE_HDR_SIZE 44
const unsigned char app_wav_hdr[APP_WAVE_HDR_SIZE] =
{
'R', 'I', 'F', 'F', /* Chunk ID : "RIFF" */
'\0', '\0', '\0', '\0', /* Chunk size = file size - 8 */
'W', 'A', 'V', 'E', /* Chunk format : "WAVE" */
'f', 'm', 't', ' ', /* Subchunk ID : "fmt " */
0x10, 0x00, 0x00, 0x00, /* Subchunk size : 16 for PCM format */
0x01, 0x00, /* Audio format : 1 means PCM linear */
'\0', '\0', /* Number of channels */
'\0', '\0', '\0', '\0', /* Sample rate */
'\0', '\0', '\0', '\0', /* Byte rate = SampleRate * NumChannels * BitsPerSample/8 */
'\0', '\0', /* Blockalign = NumChannels * BitsPerSample/8 */
'\0', '\0', /* Bitpersample */
'd', 'a', 't', 'a', /* Subchunk ID : "data" */
'\0', '\0', '\0', '\0' /* Subchunk size = NumSamples * NumChannels * BitsPerSample/8 */
};
/*
* Code straight from the spec to calculate the bits array
* Takes a pointer to the frame in question, a pointer to the bits array and
* the sampling frequency (as 2 bit integer)
*/
static SBC_ALWAYS_INLINE void sbc_calculate_bits_internal(
const struct sbc_frame *frame, int (*bits)[8], int subbands)
{
uint8_t sf = frame->frequency;
if (frame->mode == MONO || frame->mode == DUAL_CHANNEL)
{
int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice;
int ch, sb;
for (ch = 0; ch < frame->channels; ch++)
{
max_bitneed = 0;
if (frame->allocation == SNR)
{
for (sb = 0; sb < subbands; sb++)
{
bitneed[ch][sb] = frame->scale_factor[ch][sb];
if (bitneed[ch][sb] > max_bitneed)
{
max_bitneed = bitneed[ch][sb];
}
}
}
else
{
for (sb = 0; sb < subbands; sb++)
{
if (frame->scale_factor[ch][sb] == 0)
{
bitneed[ch][sb] = -5;
}
else
{
if (subbands == 4)
{
loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb];
}
else
{
loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb];
}
if (loudness > 0)
{
bitneed[ch][sb] = loudness / 2;
}
else
{
bitneed[ch][sb] = loudness;
}
}
if (bitneed[ch][sb] > max_bitneed)
{
max_bitneed = bitneed[ch][sb];
}
}
}
bitcount = 0;
slicecount = 0;
bitslice = max_bitneed + 1;
do
{
bitslice--;
bitcount += slicecount;
slicecount = 0;
for (sb = 0; sb < subbands; sb++)
{
if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16))
{
slicecount++;
}
else if (bitneed[ch][sb] == bitslice + 1)
{
slicecount += 2;
}
}
} while (bitcount + slicecount < frame->bitpool);
if (bitcount + slicecount == frame->bitpool)
{
bitcount += slicecount;
bitslice--;
}
for (sb = 0; sb < subbands; sb++)
{
if (bitneed[ch][sb] < bitslice + 2)
{
bits[ch][sb] = 0;
}
else
{
bits[ch][sb] = bitneed[ch][sb] - bitslice;
if (bits[ch][sb] > 16)
{
bits[ch][sb] = 16;
}
}
}
for (sb = 0; bitcount < frame->bitpool &&
sb < subbands; sb++)
{
if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16))
{
bits[ch][sb]++;
bitcount++;
}
else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1))
{
bits[ch][sb] = 2;
bitcount += 2;
}
}
for (sb = 0; bitcount < frame->bitpool &&
sb < subbands; sb++)
{
if (bits[ch][sb] < 16)
{
bits[ch][sb]++;
bitcount++;
}
}
}
}
else if (frame->mode == STEREO || frame->mode == JOINT_STEREO)
{
int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice;
int ch, sb;
max_bitneed = 0;
if (frame->allocation == SNR)
{
for (ch = 0; ch < 2; ch++)
{
for (sb = 0; sb < subbands; sb++)
{
bitneed[ch][sb] = frame->scale_factor[ch][sb];
if (bitneed[ch][sb] > max_bitneed)
{
max_bitneed = bitneed[ch][sb];
}
}
}
}
else
{
for (ch = 0; ch < 2; ch++)
{
for (sb = 0; sb < subbands; sb++)
{
if (frame->scale_factor[ch][sb] == 0)
{
bitneed[ch][sb] = -5;
}
else
{
if (subbands == 4)
{
loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb];
}
else
{
loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb];
}
if (loudness > 0)
{
bitneed[ch][sb] = loudness / 2;
}
else
{
bitneed[ch][sb] = loudness;
}
}
if (bitneed[ch][sb] > max_bitneed)
{
max_bitneed = bitneed[ch][sb];
}
}
}
}
bitcount = 0;
slicecount = 0;
bitslice = max_bitneed + 1;
do
{
bitslice--;
bitcount += slicecount;
slicecount = 0;
for (ch = 0; ch < 2; ch++)
{
for (sb = 0; sb < subbands; sb++)
{
if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16))
{
slicecount++;
}
else if (bitneed[ch][sb] == bitslice + 1)
{
slicecount += 2;
}
}
}
} while (bitcount + slicecount < frame->bitpool);
if (bitcount + slicecount == frame->bitpool)
{
bitcount += slicecount;
bitslice--;
}
for (ch = 0; ch < 2; ch++)
{
for (sb = 0; sb < subbands; sb++)
{
if (bitneed[ch][sb] < bitslice + 2)
{
bits[ch][sb] = 0;
}
else
{
bits[ch][sb] = bitneed[ch][sb] - bitslice;
if (bits[ch][sb] > 16)
{
bits[ch][sb] = 16;
}
}
}
}
ch = 0;
sb = 0;
while (bitcount < frame->bitpool)
{
if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16))
{
bits[ch][sb]++;
bitcount++;
}
else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1))
{
bits[ch][sb] = 2;
bitcount += 2;
}
if (ch == 1)
{
ch = 0;
sb++;
if (sb >= subbands)
{
break;
}
}
else
{
ch = 1;
}
}
ch = 0;
sb = 0;
while (bitcount < frame->bitpool)
{
if (bits[ch][sb] < 16)
{
bits[ch][sb]++;
bitcount++;
}
if (ch == 1)
{
ch = 0;
sb++;
if (sb >= subbands)
{
break;
}
}
else
{
ch = 1;
}
}
}
}
static void sbc_calculate_bits(const struct sbc_frame *frame, int (*bits)[8])
{
if (frame->subbands == 4)
{
sbc_calculate_bits_internal(frame, bits, 4);
}
else
{
sbc_calculate_bits_internal(frame, bits, 8);
}
}
/*
* Unpacks a SBC frame at the beginning of the stream in data,
* which has at most len bytes into frame.
* Returns the length in bytes of the packed frame, or a negative
* value on error. The error codes are:
*
* -1 Data stream too short
* -2 Sync byte incorrect
* -3 CRC8 incorrect
* -4 Bitpool value out of bounds
*/
static int sbc_unpack_frame_internal(const uint8_t *data,
struct sbc_frame *frame, size_t len)
{
unsigned int consumed;
/* Will copy the parts of the header that are relevant to crc
* calculation here */
uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
int crc_pos = 0;
int32_t temp;
uint32_t audio_sample;
int ch, sb, blk, bit; /* channel, subband, block and bit standard
counters */
int bits[2][8]; /* bits distribution */
uint32_t levels[2][8]; /* levels derived from that */
consumed = 32;
crc_header[0] = data[1];
crc_header[1] = data[2];
crc_pos = 16;
if (frame->mode == JOINT_STEREO)
{
if (len * 8 < consumed + frame->subbands)
{
return -1;
}
frame->joint = 0x00;
for (sb = 0; sb < frame->subbands - 1; sb++)
{
frame->joint |= ((data[4] >> (7 - sb)) & 0x01) << sb;
}
if (frame->subbands == 4)
{
crc_header[crc_pos / 8] = data[4] & 0xf0;
}
else
{
crc_header[crc_pos / 8] = data[4];
}
consumed += frame->subbands;
crc_pos += frame->subbands;
}
if (len * 8 < consumed + (4 * frame->subbands * frame->channels))
{
return -1;
}
for (ch = 0; ch < frame->channels; ch++)
{
for (sb = 0; sb < frame->subbands; sb++)
{
/* FIXME assert(consumed % 4 == 0); */
frame->scale_factor[ch][sb] =
(data[consumed >> 3] >> (4 - (consumed & 0x7))) & 0x0F;
crc_header[crc_pos >> 3] |=
frame->scale_factor[ch][sb] << (4 - (crc_pos & 0x7));
consumed += 4;
crc_pos += 4;
}
}
if (data[3] != sbc_crc8(crc_header, crc_pos))
{
return -3;
}
sbc_calculate_bits(frame, bits);
for (ch = 0; ch < frame->channels; ch++)
{
for (sb = 0; sb < frame->subbands; sb++)
{
levels[ch][sb] = (1 << bits[ch][sb]) - 1;
}
}
for (blk = 0; blk < frame->blocks; blk++)
{
for (ch = 0; ch < frame->channels; ch++)
{
for (sb = 0; sb < frame->subbands; sb++)
{
uint32_t shift;
if (levels[ch][sb] == 0)
{
frame->sb_sample[blk][ch][sb] = 0;
continue;
}
shift = frame->scale_factor[ch][sb] +
1 + SBCDEC_FIXED_EXTRA_BITS;
audio_sample = 0;
for (bit = 0; bit < bits[ch][sb]; bit++)
{
if (consumed > len * 8)
{
return -1;
}
if ((data[consumed >> 3] >> (7 - (consumed & 0x7))) & 0x01)
{
audio_sample |= 1 << (bits[ch][sb] - bit - 1);
}
consumed++;
}
frame->sb_sample[blk][ch][sb] = (int32_t)
(((((uint64_t) audio_sample << 1) | 1) << shift) /
levels[ch][sb]) - (1 << shift);
}
}
}
if (frame->mode == JOINT_STEREO)
{
for (blk = 0; blk < frame->blocks; blk++)
{
for (sb = 0; sb < frame->subbands; sb++)
{
if (frame->joint & (0x01 << sb))
{
temp = frame->sb_sample[blk][0][sb] +
frame->sb_sample[blk][1][sb];
frame->sb_sample[blk][1][sb] =
frame->sb_sample[blk][0][sb] -
frame->sb_sample[blk][1][sb];
frame->sb_sample[blk][0][sb] = temp;
}
}
}
}
if ((consumed & 0x7) != 0)
{
consumed += 8 - (consumed & 0x7);
}
return consumed >> 3;
}
static int sbc_unpack_frame(const uint8_t *data,
struct sbc_frame *frame, size_t len)
{
if (len < 4)
{
return -1;
}
if (data[0] != SBC_SYNCWORD)
{
return -2;
}
frame->frequency = (data[1] >> 6) & 0x03;
frame->block_mode = (data[1] >> 4) & 0x03;
switch (frame->block_mode)
{
case SBC_BLK_4:
frame->blocks = 4;
break;
case SBC_BLK_8:
frame->blocks = 8;
break;
case SBC_BLK_12:
frame->blocks = 12;
break;
case SBC_BLK_16:
frame->blocks = 16;
break;
}
frame->mode = (data[1] >> 2) & 0x03;
switch (frame->mode)
{
case MONO:
frame->channels = 1;
break;
case DUAL_CHANNEL: /* fall-through */
case STEREO:
case JOINT_STEREO:
frame->channels = 2;
break;
}
frame->allocation = (data[1] >> 1) & 0x01;
frame->subband_mode = (data[1] & 0x01);
frame->subbands = frame->subband_mode ? 8 : 4;
frame->bitpool = data[2];
if ((frame->mode == MONO || frame->mode == DUAL_CHANNEL) &&
frame->bitpool > 16 * frame->subbands)
{
return -4;
}
if ((frame->mode == STEREO || frame->mode == JOINT_STEREO) &&
frame->bitpool > 32 * frame->subbands)
{
return -4;
}
return sbc_unpack_frame_internal(data, frame, len);
}
static int msbc_unpack_frame(const uint8_t *data,
struct sbc_frame *frame, size_t len)
{
if (len < 4)
{
return -1;
}
if (data[0] != MSBC_SYNCWORD)
{
return -2;
}
if (data[1] != 0)
{
return -2;
}
if (data[2] != 0)
{
return -2;
}
frame->frequency = SBC_FREQ_16000;
frame->block_mode = SBC_BLK_4;
frame->blocks = MSBC_BLOCKS;
frame->allocation = LOUDNESS;
frame->mode = MONO;
frame->channels = 1;
frame->subband_mode = 1;
frame->subbands = 8;
frame->bitpool = 26;
return sbc_unpack_frame_internal(data, frame, len);
}
static void sbc_decoder_init(struct sbc_decoder_state *state,
const struct sbc_frame *frame)
{
int i, ch;
memset(state->V, 0, sizeof(state->V));
state->subbands = frame->subbands;
for (ch = 0; ch < 2; ch++)
{
for (i = 0; i < frame->subbands * 2; i++)
{
state->offset[ch][i] = (10 * i + 10);
}
}
}
static SBC_ALWAYS_INLINE int16_t sbc_clip16(int32_t s)
{
if (s > 0x7FFF)
{
return 0x7FFF;
}
else if (s < -0x8000)
{
return -0x8000;
}
else
{
return s;
}
}
static inline void sbc_synthesize_four(struct sbc_decoder_state *state,
struct sbc_frame *frame, int ch, int blk)
{
int i, k, idx;
int32_t *v = state->V[ch];
int *offset = state->offset[ch];
for (i = 0; i < 8; i++)
{
/* Shifting */
offset[i]--;
if (offset[i] < 0)
{
offset[i] = 79;
memcpy(v + 80, v, 9 * sizeof(*v));
}
/* Distribute the new matrix value to the shifted position */
v[offset[i]] = SCALE4_STAGED1(
MULA(synmatrix4[i][0], frame->sb_sample[blk][ch][0],
MULA(synmatrix4[i][1], frame->sb_sample[blk][ch][1],
MULA(synmatrix4[i][2], frame->sb_sample[blk][ch][2],
MUL (synmatrix4[i][3], frame->sb_sample[blk][ch][3])))));
}
/* Compute the samples */
for (idx = 0, i = 0; i < 4; i++, idx += 5)
{
k = (i + 4) & 0xf;
/* Store in output, Q0 */
frame->pcm_sample[ch][blk * 4 + i] = sbc_clip16(SCALE4_STAGED1(
MULA(v[offset[i] + 0], sbc_proto_4_40m0[idx + 0],
MULA(v[offset[k] + 1], sbc_proto_4_40m1[idx + 0],
MULA(v[offset[i] + 2], sbc_proto_4_40m0[idx + 1],
MULA(v[offset[k] + 3], sbc_proto_4_40m1[idx + 1],
MULA(v[offset[i] + 4], sbc_proto_4_40m0[idx + 2],
MULA(v[offset[k] + 5], sbc_proto_4_40m1[idx + 2],
MULA(v[offset[i] + 6], sbc_proto_4_40m0[idx + 3],
MULA(v[offset[k] + 7], sbc_proto_4_40m1[idx + 3],
MULA(v[offset[i] + 8], sbc_proto_4_40m0[idx + 4],
MUL( v[offset[k] + 9], sbc_proto_4_40m1[idx + 4]))))))))))));
}
}
static inline void sbc_synthesize_eight(struct sbc_decoder_state *state,
struct sbc_frame *frame, int ch, int blk)
{
int i, j, k, idx;
int *offset = state->offset[ch];
for (i = 0; i < 16; i++)
{
/* Shifting */
offset[i]--;
if (offset[i] < 0)
{
offset[i] = 159;
for (j = 0; j < 9; j++)
{
state->V[ch][j + 160] = state->V[ch][j];
}
}
/* Distribute the new matrix value to the shifted position */
state->V[ch][offset[i]] = SCALE8_STAGED1(
MULA(synmatrix8[i][0], frame->sb_sample[blk][ch][0],
MULA(synmatrix8[i][1], frame->sb_sample[blk][ch][1],
MULA(synmatrix8[i][2], frame->sb_sample[blk][ch][2],
MULA(synmatrix8[i][3], frame->sb_sample[blk][ch][3],
MULA(synmatrix8[i][4], frame->sb_sample[blk][ch][4],
MULA(synmatrix8[i][5], frame->sb_sample[blk][ch][5],
MULA(synmatrix8[i][6], frame->sb_sample[blk][ch][6],
MUL( synmatrix8[i][7], frame->sb_sample[blk][ch][7])))))))));
}
/* Compute the samples */
for (idx = 0, i = 0; i < 8; i++, idx += 5)
{
k = (i + 8) & 0xf;
/* Store in output, Q0 */
frame->pcm_sample[ch][blk * 8 + i] = sbc_clip16(SCALE8_STAGED1(
MULA(state->V[ch][offset[i] + 0], sbc_proto_8_80m0[idx + 0],
MULA(state->V[ch][offset[k] + 1], sbc_proto_8_80m1[idx + 0],
MULA(state->V[ch][offset[i] + 2], sbc_proto_8_80m0[idx + 1],
MULA(state->V[ch][offset[k] + 3], sbc_proto_8_80m1[idx + 1],
MULA(state->V[ch][offset[i] + 4], sbc_proto_8_80m0[idx + 2],
MULA(state->V[ch][offset[k] + 5], sbc_proto_8_80m1[idx + 2],
MULA(state->V[ch][offset[i] + 6], sbc_proto_8_80m0[idx + 3],
MULA(state->V[ch][offset[k] + 7], sbc_proto_8_80m1[idx + 3],
MULA(state->V[ch][offset[i] + 8], sbc_proto_8_80m0[idx + 4],
MUL( state->V[ch][offset[k] + 9], sbc_proto_8_80m1[idx + 4]))))))))))));
}
}
static int sbc_synthesize_audio(struct sbc_decoder_state *state,
struct sbc_frame *frame)
{
int ch, blk;
switch (frame->subbands)
{
case 4:
for (ch = 0; ch < frame->channels; ch++)
{
for (blk = 0; blk < frame->blocks; blk++)
{
sbc_synthesize_four(state, frame, ch, blk);
}
}
return frame->blocks * 4;
case 8:
for (ch = 0; ch < frame->channels; ch++)
{
for (blk = 0; blk < frame->blocks; blk++)
{
sbc_synthesize_eight(state, frame, ch, blk);
}
}
return frame->blocks * 8;
default:
return -EIO;
}
}
static int sbc_analyze_audio(struct sbc_encoder_state *state,
struct sbc_frame *frame)
{
int ch, blk;
int16_t *x;
switch (frame->subbands)
{
case 4:
for (ch = 0; ch < frame->channels; ch++)
{
x = &state->X[ch][state->position - 4 *
state->increment + frame->blocks * 4];
for (blk = 0; blk < frame->blocks;
blk += state->increment)
{
state->sbc_analyze_4s(
state, x,
frame->sb_sample_f[blk][ch],
frame->sb_sample_f[blk + 1][ch] -
frame->sb_sample_f[blk][ch]);
x -= 4 * state->increment;
}
}
return frame->blocks * 4;
case 8:
for (ch = 0; ch < frame->channels; ch++)
{
x = &state->X[ch][state->position - 8 *
state->increment + frame->blocks * 8];
for (blk = 0; blk < frame->blocks;
blk += state->increment)
{
state->sbc_analyze_8s(
state, x,
frame->sb_sample_f[blk][ch],
frame->sb_sample_f[blk + 1][ch] -
frame->sb_sample_f[blk][ch]);
x -= 8 * state->increment;
}
}
return frame->blocks * 8;
default:
return -EIO;
}
}
#define PUT_BITS(data_ptr, bits_cache, bits_count, v, n) \
do \
{ \
bits_cache = (v) | (bits_cache << (n)); \
bits_count += (n); \
if (bits_count >= 16) \
{ \
bits_count -= 8; \
*data_ptr++ = (uint8_t) \
(bits_cache >> bits_count); \
bits_count -= 8; \
*data_ptr++ = (uint8_t) \
(bits_cache >> bits_count); \
} \
} while (0)
#define FLUSH_BITS(data_ptr, bits_cache, bits_count) \
do \
{ \
while (bits_count >= 8) \
{ \
bits_count -= 8; \
*data_ptr++ = (uint8_t) \
(bits_cache >> bits_count); \
} \
if (bits_count > 0) \
*data_ptr++ = (uint8_t) \
(bits_cache << (8 - bits_count)); \
} while (0)
static SBC_ALWAYS_INLINE ssize_t sbc_pack_frame_internal(uint8_t *data,
struct sbc_frame *frame, size_t len,
int frame_subbands, int frame_channels,
int joint)
{
/* Bitstream writer starts from the fourth byte */
uint8_t *data_ptr = data + 4;
uint32_t bits_cache = 0;
uint32_t bits_count = 0;
/* Will copy the header parts for CRC-8 calculation here */
uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
int crc_pos = 0;
uint32_t audio_sample;
int ch, sb, blk; /* channel, subband, block and bit counters */
int bits[2][8]; /* bits distribution */
uint32_t levels[2][8]; /* levels are derived from that */
uint32_t sb_sample_delta[2][8];
/* Can't fill in crc yet */
crc_header[0] = data[1];
crc_header[1] = data[2];
crc_pos = 16;
if (frame->mode == JOINT_STEREO)
{
PUT_BITS(data_ptr, bits_cache, bits_count,
joint, frame_subbands);
crc_header[crc_pos >> 3] = joint;
crc_pos += frame_subbands;
}
for (ch = 0; ch < frame_channels; ch++)
{
for (sb = 0; sb < frame_subbands; sb++)
{
PUT_BITS(data_ptr, bits_cache, bits_count,
frame->scale_factor[ch][sb] & 0x0F, 4);
crc_header[crc_pos >> 3] <<= 4;
crc_header[crc_pos >> 3] |= frame->scale_factor[ch][sb] & 0x0F;
crc_pos += 4;
}
}
/* align the last crc byte */
if (crc_pos % 8)
{
crc_header[crc_pos >> 3] <<= 8 - (crc_pos % 8);
}
data[3] = sbc_crc8(crc_header, crc_pos);
sbc_calculate_bits(frame, bits);
for (ch = 0; ch < frame_channels; ch++)
{
for (sb = 0; sb < frame_subbands; sb++)
{
levels[ch][sb] = ((1 << bits[ch][sb]) - 1) <<
(32 - (frame->scale_factor[ch][sb] +
SCALE_OUT_BITS + 2));
sb_sample_delta[ch][sb] = (uint32_t) 1 <<
(frame->scale_factor[ch][sb] +
SCALE_OUT_BITS + 1);
}
}
for (blk = 0; blk < frame->blocks; blk++)
{
for (ch = 0; ch < frame_channels; ch++)
{
for (sb = 0; sb < frame_subbands; sb++)
{
if (bits[ch][sb] == 0)
{
continue;
}
audio_sample = ((uint64_t) levels[ch][sb] *
(sb_sample_delta[ch][sb] +
frame->sb_sample_f[blk][ch][sb])) >> 32;
PUT_BITS(data_ptr, bits_cache, bits_count,
audio_sample, bits[ch][sb]);
}
}
}
FLUSH_BITS(data_ptr, bits_cache, bits_count);
return data_ptr - data;
}
static ssize_t sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len, int joint)
{
int frame_subbands = 4;
data[0] = SBC_SYNCWORD;
data[1] = (frame->frequency & 0x03) << 6;
data[1] |= (frame->block_mode & 0x03) << 4;
data[1] |= (frame->mode & 0x03) << 2;
data[1] |= (frame->allocation & 0x01) << 1;
data[2] = frame->bitpool;
if (frame->subbands != 4)
{
frame_subbands = 8;
}
if ((frame->mode == MONO || frame->mode == DUAL_CHANNEL) &&
frame->bitpool > frame_subbands << 4)
{
return -5;
}
if ((frame->mode == STEREO || frame->mode == JOINT_STEREO) &&
frame->bitpool > frame_subbands << 5)
{
return -5;
}
if (frame->subbands == 4)
{
if (frame->channels == 1)
{
return sbc_pack_frame_internal(
data, frame, len, 4, 1, joint);
}
else
{
return sbc_pack_frame_internal(
data, frame, len, 4, 2, joint);
}
}
else
{
data[1] |= 0x01;
if (frame->channels == 1)
{
return sbc_pack_frame_internal(
data, frame, len, 8, 1, joint);
}
else
{
return sbc_pack_frame_internal(
data, frame, len, 8, 2, joint);
}
}
}
static ssize_t msbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len, int joint)
{
data[0] = MSBC_SYNCWORD;
data[1] = 0;
data[2] = 0;
return sbc_pack_frame_internal(data, frame, len, 8, 1, joint);
}
struct sbc_priv
{
bool init;
bool msbc;
struct SBC_ALIGNED sbc_frame frame;
struct SBC_ALIGNED sbc_decoder_state dec_state;
struct SBC_ALIGNED sbc_encoder_state enc_state;
int (*unpack_frame)(const uint8_t *data, struct sbc_frame *frame,
size_t len);
ssize_t (*pack_frame)(uint8_t *data, struct sbc_frame *frame,
size_t len, int joint);
};
static void sbc_set_defaults(sbc_t *sbc, unsigned long flags)
{
struct sbc_priv *priv = (struct sbc_priv *)sbc->priv; // cast by chen cai
if (priv->msbc)
{
priv->pack_frame = msbc_pack_frame;
priv->unpack_frame = msbc_unpack_frame;
}
else
{
priv->pack_frame = sbc_pack_frame;
priv->unpack_frame = sbc_unpack_frame;
}
sbc->flags = flags;
sbc->frequency = SBC_FREQ_44100;
sbc->mode = SBC_MODE_STEREO;
sbc->subbands = SBC_SB_8;
sbc->blocks = SBC_BLK_16;
sbc->bitpool = 32;
#if __BYTE_ORDER == __LITTLE_ENDIAN
sbc->endian = SBC_LE;
#elif __BYTE_ORDER == __BIG_ENDIAN
sbc->endian = SBC_BE;
#else
#error "Unknown byte order"
#endif
}
static uint8_t sbc_static_init_buffer[sizeof(struct sbc_priv) + SBC_ALIGN_MASK];
int sbc_init(sbc_t *sbc, unsigned long flags)
{
if (!sbc)
{
return -EIO;
}
memset(sbc, 0, sizeof(sbc_t));
//sbc->priv_alloc_base = malloc(sizeof(struct sbc_priv) + SBC_ALIGN_MASK);
memset(sbc_static_init_buffer, 0, sizeof(sbc_static_init_buffer));
sbc->priv_alloc_base = (void *)sbc_static_init_buffer;
if (!sbc->priv_alloc_base)
{
return -ENOMEM;
}
sbc->priv = (void *) (((uintptr_t) sbc->priv_alloc_base +
SBC_ALIGN_MASK) & ~((uintptr_t) SBC_ALIGN_MASK));
memset(sbc->priv, 0, sizeof(struct sbc_priv));
sbc_set_defaults(sbc, flags);
#if 0
sbc->frequency = SBC_FREQ_16000;
sbc->blocks = SBC_BLK_16;
sbc->subbands = SBC_SB_8;
sbc->mode = SBC_MODE_MONO;
sbc->allocation = SBC_AM_LOUDNESS;//SBC_AM_SNR;
sbc->bitpool = 32;//28;//156 bytes input 64 bytes output
#endif
return 0;
}
int sbc_init_msbc(sbc_t *sbc, unsigned long flags)
{
struct sbc_priv *priv;
if (!sbc)
{
return -EIO;
}
memset(sbc, 0, sizeof(sbc_t));
//sbc->priv_alloc_base = malloc(sizeof(struct sbc_priv) + SBC_ALIGN_MASK);
memset(sbc_static_init_buffer, 0, sizeof(sbc_static_init_buffer));
sbc->priv_alloc_base = (void *)sbc_static_init_buffer;
if (!sbc->priv_alloc_base)
{
return -ENOMEM;
}
sbc->priv = (void *) (((uintptr_t) sbc->priv_alloc_base +
SBC_ALIGN_MASK) & ~((uintptr_t) SBC_ALIGN_MASK));
memset(sbc->priv, 0, sizeof(struct sbc_priv));
priv = (struct sbc_priv*)sbc->priv; // cast by chencai
priv->msbc = true;
sbc_set_defaults(sbc, flags);
sbc->frequency = SBC_FREQ_16000;
sbc->blocks = MSBC_BLOCKS;
sbc->subbands = SBC_SB_8;
sbc->mode = SBC_MODE_MONO;
sbc->allocation = SBC_AM_LOUDNESS;
sbc->bitpool = 26;
return 0;
}
ssize_t sbc_decode(sbc_t *sbc, const void *input, size_t input_len,
void *output, size_t output_len, size_t *written)
{
struct sbc_priv *priv;
char *ptr;
int i, ch, framelen, samples;
if (!sbc || !input)
{
return -EIO;
}
priv = (struct sbc_priv*)sbc->priv; // cast by chencai
framelen = priv->unpack_frame((const uint8_t*)input, &priv->frame, input_len); // cast by chencai
if (!priv->init)
{
sbc_decoder_init(&priv->dec_state, &priv->frame);
priv->init = true;
sbc->frequency = priv->frame.frequency;
sbc->mode = priv->frame.mode;
sbc->subbands = priv->frame.subband_mode;
sbc->blocks = priv->frame.block_mode;
sbc->allocation = priv->frame.allocation;
sbc->bitpool = priv->frame.bitpool;
priv->frame.codesize = sbc_get_codesize(sbc);
priv->frame.length = framelen;
}
else if (priv->frame.bitpool != sbc->bitpool)
{
priv->frame.length = framelen;
sbc->bitpool = priv->frame.bitpool;
}
if (!output)
{
return framelen;
}
if (written)
{
*written = 0;
}
if (framelen <= 0)
{
return framelen;
}
samples = sbc_synthesize_audio(&priv->dec_state, &priv->frame);
ptr = (char*)output; // cast by chencai
if (output_len < (size_t) (samples * priv->frame.channels * 2))
{
samples = output_len / (priv->frame.channels * 2);
}
for (i = 0; i < samples; i++)
{
for (ch = 0; ch < priv->frame.channels; ch++)
{
int16_t s;
s = priv->frame.pcm_sample[ch][i];
if (sbc->endian == SBC_BE)
{
*ptr++ = (s & 0xff00) >> 8;
*ptr++ = (s & 0x00ff);
}
else
{
*ptr++ = (s & 0x00ff);
*ptr++ = (s & 0xff00) >> 8;
}
}
}
if (written)
{
*written = samples * priv->frame.channels * 2;
}
return framelen;
}
static void sbc_encoder_init(bool msbc, struct sbc_encoder_state *state,
const struct sbc_frame *frame)
{
memset(&state->X, 0, sizeof(state->X));
state->position = (SBC_X_BUFFER_SIZE - frame->subbands * 9) & ~7;
if (msbc)
{
state->increment = 1;
}
else
{
state->increment = 4;
}
sbc_init_primitives(state);
}
SBC_EXPORT ssize_t sbc_encode(sbc_t *sbc, const void *input, size_t input_len,
void *output, size_t output_len, ssize_t *written)
{
struct sbc_priv *priv;
int samples;
ssize_t framelen;
int (*sbc_enc_process_input)(int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels);
if (!sbc || !input)
{
return -EIO;
}
priv = (struct sbc_priv*)sbc->priv; // cast by chencai
if (written)
{
*written = 0;
}
if (!priv->init)
{
priv->frame.frequency = sbc->frequency;
priv->frame.mode = sbc->mode;
priv->frame.channels = sbc->mode == SBC_MODE_MONO ? 1 : 2;
priv->frame.allocation = sbc->allocation;
priv->frame.subband_mode = sbc->subbands;
priv->frame.subbands = sbc->subbands ? 8 : 4;
priv->frame.block_mode = sbc->blocks;
if (priv->msbc)
{
priv->frame.blocks = MSBC_BLOCKS;
}
else
{
priv->frame.blocks = 4 + (sbc->blocks * 4);
}
priv->frame.bitpool = sbc->bitpool;
priv->frame.codesize = sbc_get_codesize(sbc);
priv->frame.length = sbc_get_frame_length(sbc);
sbc_encoder_init(priv->msbc, &priv->enc_state, &priv->frame);
priv->init = true;
}
else if (priv->frame.bitpool != sbc->bitpool)
{
priv->frame.length = sbc_get_frame_length(sbc);
priv->frame.bitpool = sbc->bitpool;
}
/* input must be large enough to encode a complete frame */
if (input_len < priv->frame.codesize)
{
return 0;
}
/* output must be large enough to receive the encoded frame */
if (!output || output_len < priv->frame.length)
{
return -ENOSPC;
}
/* Select the needed input data processing function and call it */
if (priv->frame.subbands == 8)
{
if (sbc->endian == SBC_BE)
{
sbc_enc_process_input =
priv->enc_state.sbc_enc_process_input_8s_be;
}
else
{
sbc_enc_process_input =
priv->enc_state.sbc_enc_process_input_8s_le;
}
}
else
{
if (sbc->endian == SBC_BE)
{
sbc_enc_process_input =
priv->enc_state.sbc_enc_process_input_4s_be;
}
else
{
sbc_enc_process_input =
priv->enc_state.sbc_enc_process_input_4s_le;
}
}
priv->enc_state.position = sbc_enc_process_input(
priv->enc_state.position, (const uint8_t *) input,
priv->enc_state.X, priv->frame.subbands * priv->frame.blocks,
priv->frame.channels);
samples = sbc_analyze_audio(&priv->enc_state, &priv->frame);
if (priv->frame.mode == JOINT_STEREO)
{
int j = priv->enc_state.sbc_calc_scalefactors_j(
priv->frame.sb_sample_f, priv->frame.scale_factor,
priv->frame.blocks, priv->frame.subbands);
framelen = priv->pack_frame((uint8_t*)output,
&priv->frame, output_len, j); // cast by chencai
}
else
{
priv->enc_state.sbc_calc_scalefactors(
priv->frame.sb_sample_f, priv->frame.scale_factor,
priv->frame.blocks, priv->frame.channels,
priv->frame.subbands);
framelen = priv->pack_frame((uint8_t*)output,
&priv->frame, output_len, 0);
}
if (written)
{
*written = framelen;
}
return samples * priv->frame.channels * 2;
}
SBC_EXPORT void sbc_finish(sbc_t *sbc)
{
if (!sbc)
{
return;
}
//free(sbc->priv_alloc_base);
memset(sbc, 0, sizeof(sbc_t));
}
SBC_EXPORT size_t sbc_get_frame_length(sbc_t *sbc)
{
int ret;
uint8_t subbands, channels, blocks, joint, bitpool;
struct sbc_priv *priv;
priv = (struct sbc_priv*)sbc->priv; // cast by chencai
if (priv->init && priv->frame.bitpool == sbc->bitpool)
{
return priv->frame.length;
}
subbands = sbc->subbands ? 8 : 4;
if (priv->msbc)
{
blocks = MSBC_BLOCKS;
}
else
{
blocks = 4 + (sbc->blocks * 4);
}
channels = sbc->mode == SBC_MODE_MONO ? 1 : 2;
joint = sbc->mode == SBC_MODE_JOINT_STEREO ? 1 : 0;
bitpool = sbc->bitpool;
ret = 4 + (4 * subbands * channels) / 8;
/* This term is not always evenly divide so we round it up */
if (channels == 1 || sbc->mode == SBC_MODE_DUAL_CHANNEL)
{
ret += ((blocks * channels * bitpool) + 7) / 8;
}
else
{
ret += (((joint ? subbands : 0) + blocks * bitpool) + 7) / 8;
}
return ret;
}
SBC_EXPORT unsigned sbc_get_frame_duration(sbc_t *sbc)
{
uint8_t subbands, blocks;
uint16_t frequency;
struct sbc_priv *priv;
priv = (struct sbc_priv*)sbc->priv; // cast by chencai
if (!priv->init)
{
subbands = sbc->subbands ? 8 : 4;
if (priv->msbc)
{
blocks = MSBC_BLOCKS;
}
else
{
blocks = 4 + (sbc->blocks * 4);
}
}
else
{
subbands = priv->frame.subbands;
blocks = priv->frame.blocks;
}
switch (sbc->frequency)
{
case SBC_FREQ_16000:
frequency = 16000;
break;
case SBC_FREQ_32000:
frequency = 32000;
break;
case SBC_FREQ_44100:
frequency = 44100;
break;
case SBC_FREQ_48000:
frequency = 48000;
break;
default:
return 0;
}
return (1000000 * blocks * subbands) / frequency;
}
SBC_EXPORT size_t sbc_get_codesize(sbc_t *sbc)
{
uint16_t subbands, channels, blocks;
struct sbc_priv *priv;
priv = (struct sbc_priv*)sbc->priv; // cast by chencai
if (!priv->init)
{
subbands = sbc->subbands ? 8 : 4;
if (priv->msbc)
{
blocks = MSBC_BLOCKS;
}
else
{
blocks = 4 + (sbc->blocks * 4);
}
channels = sbc->mode == SBC_MODE_MONO ? 1 : 2;
}
else
{
subbands = priv->frame.subbands;
blocks = priv->frame.blocks;
channels = priv->frame.channels;
}
return subbands * blocks * channels * 2;
}
SBC_EXPORT const char *sbc_get_implementation_info(sbc_t *sbc)
{
struct sbc_priv *priv;
if (!sbc)
{
return NULL;
}
priv = (struct sbc_priv*)sbc->priv; // cast by chencai
if (!priv)
{
return NULL;
}
return priv->enc_state.implementation_info;
}
SBC_EXPORT int sbc_reinit(sbc_t *sbc, unsigned long flags)
{
struct sbc_priv *priv;
if (!sbc || !sbc->priv)
{
return -EIO;
}
priv = (struct sbc_priv*)sbc->priv; // cast by chencai
if (priv->init)
{
memset(sbc->priv, 0, sizeof(struct sbc_priv));
}
sbc_set_defaults(sbc, flags);
return 0;
}
/* FIXME: in msvc, we use inline, otherwise use inline.
* Add #ifdef _MSC_VER check. (chencai)
*/
static inline void sbc_analyze_four_simd(const int16_t *in, int32_t *out,
const FIXED_T *consts)
{
FIXED_A t1[4];
FIXED_T t2[4];
int hop = 0;
/* rounding coefficient */
t1[0] = t1[1] = t1[2] = t1[3] =
(FIXED_A) 1 << (SBC_PROTO_FIXED4_SCALE - 1);
/* low pass polyphase filter */
for (hop = 0; hop < 40; hop += 8)
{
t1[0] += (FIXED_A) in[hop] * consts[hop];
t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1];
t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2];
t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3];
t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4];
t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5];
t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6];
t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7];
}
/* scaling */
t2[0] = t1[0] >> SBC_PROTO_FIXED4_SCALE;
t2[1] = t1[1] >> SBC_PROTO_FIXED4_SCALE;
t2[2] = t1[2] >> SBC_PROTO_FIXED4_SCALE;
t2[3] = t1[3] >> SBC_PROTO_FIXED4_SCALE;
/* do the cos transform */
t1[0] = (FIXED_A) t2[0] * consts[40 + 0];
t1[0] += (FIXED_A) t2[1] * consts[40 + 1];
t1[1] = (FIXED_A) t2[0] * consts[40 + 2];
t1[1] += (FIXED_A) t2[1] * consts[40 + 3];
t1[2] = (FIXED_A) t2[0] * consts[40 + 4];
t1[2] += (FIXED_A) t2[1] * consts[40 + 5];
t1[3] = (FIXED_A) t2[0] * consts[40 + 6];
t1[3] += (FIXED_A) t2[1] * consts[40 + 7];
t1[0] += (FIXED_A) t2[2] * consts[40 + 8];
t1[0] += (FIXED_A) t2[3] * consts[40 + 9];
t1[1] += (FIXED_A) t2[2] * consts[40 + 10];
t1[1] += (FIXED_A) t2[3] * consts[40 + 11];
t1[2] += (FIXED_A) t2[2] * consts[40 + 12];
t1[2] += (FIXED_A) t2[3] * consts[40 + 13];
t1[3] += (FIXED_A) t2[2] * consts[40 + 14];
t1[3] += (FIXED_A) t2[3] * consts[40 + 15];
out[0] = t1[0] >>
(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
out[1] = t1[1] >>
(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
out[2] = t1[2] >>
(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
out[3] = t1[3] >>
(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
}
static inline void sbc_analyze_eight_simd(const int16_t *in, int32_t *out,
const FIXED_T *consts)
{
FIXED_A t1[8];
FIXED_T t2[8];
int i, hop;
/* rounding coefficient */
t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] =
(FIXED_A) 1 << (SBC_PROTO_FIXED8_SCALE-1);
/* low pass polyphase filter */
for (hop = 0; hop < 80; hop += 16)
{
t1[0] += (FIXED_A) in[hop] * consts[hop];
t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1];
t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2];
t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3];
t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4];
t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5];
t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6];
t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7];
t1[4] += (FIXED_A) in[hop + 8] * consts[hop + 8];
t1[4] += (FIXED_A) in[hop + 9] * consts[hop + 9];
t1[5] += (FIXED_A) in[hop + 10] * consts[hop + 10];
t1[5] += (FIXED_A) in[hop + 11] * consts[hop + 11];
t1[6] += (FIXED_A) in[hop + 12] * consts[hop + 12];
t1[6] += (FIXED_A) in[hop + 13] * consts[hop + 13];
t1[7] += (FIXED_A) in[hop + 14] * consts[hop + 14];
t1[7] += (FIXED_A) in[hop + 15] * consts[hop + 15];
}
/* scaling */
t2[0] = t1[0] >> SBC_PROTO_FIXED8_SCALE;
t2[1] = t1[1] >> SBC_PROTO_FIXED8_SCALE;
t2[2] = t1[2] >> SBC_PROTO_FIXED8_SCALE;
t2[3] = t1[3] >> SBC_PROTO_FIXED8_SCALE;
t2[4] = t1[4] >> SBC_PROTO_FIXED8_SCALE;
t2[5] = t1[5] >> SBC_PROTO_FIXED8_SCALE;
t2[6] = t1[6] >> SBC_PROTO_FIXED8_SCALE;
t2[7] = t1[7] >> SBC_PROTO_FIXED8_SCALE;
/* do the cos transform */
t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] = 0;
for (i = 0; i < 4; i++)
{
t1[0] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 0];
t1[0] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 1];
t1[1] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 2];
t1[1] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 3];
t1[2] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 4];
t1[2] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 5];
t1[3] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 6];
t1[3] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 7];
t1[4] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 8];
t1[4] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 9];
t1[5] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 10];
t1[5] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 11];
t1[6] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 12];
t1[6] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 13];
t1[7] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 14];
t1[7] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 15];
}
for (i = 0; i < 8; i++)
{
out[i] = t1[i] >>
(SBC_COS_TABLE_FIXED8_SCALE - SCALE_OUT_BITS);
}
}
static inline void sbc_analyze_4b_4s_simd(struct sbc_encoder_state *state,
int16_t *x, int32_t *out, int out_stride)
{
/* Analyze blocks */
sbc_analyze_four_simd(x + 12, out, analysis_consts_fixed4_simd_odd);
out += out_stride;
sbc_analyze_four_simd(x + 8, out, analysis_consts_fixed4_simd_even);
out += out_stride;
sbc_analyze_four_simd(x + 4, out, analysis_consts_fixed4_simd_odd);
out += out_stride;
sbc_analyze_four_simd(x + 0, out, analysis_consts_fixed4_simd_even);
}
static inline void sbc_analyze_4b_8s_simd(struct sbc_encoder_state *state,
int16_t *x, int32_t *out, int out_stride)
{
/* Analyze blocks */
sbc_analyze_eight_simd(x + 24, out, analysis_consts_fixed8_simd_odd);
out += out_stride;
sbc_analyze_eight_simd(x + 16, out, analysis_consts_fixed8_simd_even);
out += out_stride;
sbc_analyze_eight_simd(x + 8, out, analysis_consts_fixed8_simd_odd);
out += out_stride;
sbc_analyze_eight_simd(x + 0, out, analysis_consts_fixed8_simd_even);
}
static inline void sbc_analyze_1b_8s_simd_even(struct sbc_encoder_state *state,
int16_t *x, int32_t *out, int out_stride);
static inline void sbc_analyze_1b_8s_simd_odd(struct sbc_encoder_state *state,
int16_t *x, int32_t *out, int out_stride)
{
sbc_analyze_eight_simd(x, out, analysis_consts_fixed8_simd_odd);
state->sbc_analyze_8s = sbc_analyze_1b_8s_simd_even;
}
static inline void sbc_analyze_1b_8s_simd_even(struct sbc_encoder_state *state,
int16_t *x, int32_t *out, int out_stride)
{
sbc_analyze_eight_simd(x, out, analysis_consts_fixed8_simd_even);
state->sbc_analyze_8s = sbc_analyze_1b_8s_simd_odd;
}
static inline int16_t unaligned16_be(const uint8_t *ptr)
{
return (int16_t) ((ptr[0] << 8) | ptr[1]);
}
static inline int16_t unaligned16_le(const uint8_t *ptr)
{
return (int16_t) (ptr[0] | (ptr[1] << 8));
}
/*
* Internal helper functions for input data processing. In order to get
* optimal performance, it is important to have "nsamples", "nchannels"
* and "big_endian" arguments used with this inline function as compile
* time constants.
*/
static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s4_internal(
int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels, int big_endian)
{
/* handle X buffer wraparound */
if (position < nsamples)
{
if (nchannels > 0)
{
memcpy(&X[0][SBC_X_BUFFER_SIZE - 40], &X[0][position],
36 * sizeof(int16_t));
}
if (nchannels > 1)
{
memcpy(&X[1][SBC_X_BUFFER_SIZE - 40], &X[1][position],
36 * sizeof(int16_t));
}
position = SBC_X_BUFFER_SIZE - 40;
}
#define PCM(i) (big_endian ? \
unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))
/* copy/permutate audio samples */
while ((nsamples -= 8) >= 0)
{
position -= 8;
if (nchannels > 0)
{
int16_t *x = &X[0][position];
x[0] = PCM(0 + 7 * nchannels);
x[1] = PCM(0 + 3 * nchannels);
x[2] = PCM(0 + 6 * nchannels);
x[3] = PCM(0 + 4 * nchannels);
x[4] = PCM(0 + 0 * nchannels);
x[5] = PCM(0 + 2 * nchannels);
x[6] = PCM(0 + 1 * nchannels);
x[7] = PCM(0 + 5 * nchannels);
}
if (nchannels > 1)
{
int16_t *x = &X[1][position];
x[0] = PCM(1 + 7 * nchannels);
x[1] = PCM(1 + 3 * nchannels);
x[2] = PCM(1 + 6 * nchannels);
x[3] = PCM(1 + 4 * nchannels);
x[4] = PCM(1 + 0 * nchannels);
x[5] = PCM(1 + 2 * nchannels);
x[6] = PCM(1 + 1 * nchannels);
x[7] = PCM(1 + 5 * nchannels);
}
pcm += 16 * nchannels;
}
#undef PCM
return position;
}
static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s8_internal(
int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels, int big_endian)
{
/* handle X buffer wraparound */
if (position < nsamples)
{
if (nchannels > 0)
{
memcpy(&X[0][SBC_X_BUFFER_SIZE - 72], &X[0][position],
72 * sizeof(int16_t));
}
if (nchannels > 1)
{
memcpy(&X[1][SBC_X_BUFFER_SIZE - 72], &X[1][position],
72 * sizeof(int16_t));
}
position = SBC_X_BUFFER_SIZE - 72;
}
#define PCM(i) (big_endian ? \
unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))
if (position % 16 == 8)
{
position -= 8;
nsamples -= 8;
if (nchannels > 0)
{
int16_t *x = &X[0][position];
x[0] = PCM(0 + (15-8) * nchannels);
x[2] = PCM(0 + (14-8) * nchannels);
x[3] = PCM(0 + (8-8) * nchannels);
x[4] = PCM(0 + (13-8) * nchannels);
x[5] = PCM(0 + (9-8) * nchannels);
x[6] = PCM(0 + (12-8) * nchannels);
x[7] = PCM(0 + (10-8) * nchannels);
x[8] = PCM(0 + (11-8) * nchannels);
}
if (nchannels > 1)
{
int16_t *x = &X[1][position];
x[0] = PCM(1 + (15-8) * nchannels);
x[2] = PCM(1 + (14-8) * nchannels);
x[3] = PCM(1 + (8-8) * nchannels);
x[4] = PCM(1 + (13-8) * nchannels);
x[5] = PCM(1 + (9-8) * nchannels);
x[6] = PCM(1 + (12-8) * nchannels);
x[7] = PCM(1 + (10-8) * nchannels);
x[8] = PCM(1 + (11-8) * nchannels);
}
pcm += 16 * nchannels;
}
/* copy/permutate audio samples */
while (nsamples >= 16)
{
position -= 16;
if (nchannels > 0)
{
int16_t *x = &X[0][position];
x[0] = PCM(0 + 15 * nchannels);
x[1] = PCM(0 + 7 * nchannels);
x[2] = PCM(0 + 14 * nchannels);
x[3] = PCM(0 + 8 * nchannels);
x[4] = PCM(0 + 13 * nchannels);
x[5] = PCM(0 + 9 * nchannels);
x[6] = PCM(0 + 12 * nchannels);
x[7] = PCM(0 + 10 * nchannels);
x[8] = PCM(0 + 11 * nchannels);
x[9] = PCM(0 + 3 * nchannels);
x[10] = PCM(0 + 6 * nchannels);
x[11] = PCM(0 + 0 * nchannels);
x[12] = PCM(0 + 5 * nchannels);
x[13] = PCM(0 + 1 * nchannels);
x[14] = PCM(0 + 4 * nchannels);
x[15] = PCM(0 + 2 * nchannels);
}
if (nchannels > 1)
{
int16_t *x = &X[1][position];
x[0] = PCM(1 + 15 * nchannels);
x[1] = PCM(1 + 7 * nchannels);
x[2] = PCM(1 + 14 * nchannels);
x[3] = PCM(1 + 8 * nchannels);
x[4] = PCM(1 + 13 * nchannels);
x[5] = PCM(1 + 9 * nchannels);
x[6] = PCM(1 + 12 * nchannels);
x[7] = PCM(1 + 10 * nchannels);
x[8] = PCM(1 + 11 * nchannels);
x[9] = PCM(1 + 3 * nchannels);
x[10] = PCM(1 + 6 * nchannels);
x[11] = PCM(1 + 0 * nchannels);
x[12] = PCM(1 + 5 * nchannels);
x[13] = PCM(1 + 1 * nchannels);
x[14] = PCM(1 + 4 * nchannels);
x[15] = PCM(1 + 2 * nchannels);
}
pcm += 32 * nchannels;
nsamples -= 16;
}
if (nsamples == 8)
{
position -= 8;
if (nchannels > 0)
{
int16_t *x = &X[0][position];
x[-7] = PCM(0 + 7 * nchannels);
x[1] = PCM(0 + 3 * nchannels);
x[2] = PCM(0 + 6 * nchannels);
x[3] = PCM(0 + 0 * nchannels);
x[4] = PCM(0 + 5 * nchannels);
x[5] = PCM(0 + 1 * nchannels);
x[6] = PCM(0 + 4 * nchannels);
x[7] = PCM(0 + 2 * nchannels);
}
if (nchannels > 1)
{
int16_t *x = &X[1][position];
x[-7] = PCM(1 + 7 * nchannels);
x[1] = PCM(1 + 3 * nchannels);
x[2] = PCM(1 + 6 * nchannels);
x[3] = PCM(1 + 0 * nchannels);
x[4] = PCM(1 + 5 * nchannels);
x[5] = PCM(1 + 1 * nchannels);
x[6] = PCM(1 + 4 * nchannels);
x[7] = PCM(1 + 2 * nchannels);
}
}
#undef PCM
return position;
}
/*
* Input data processing functions. The data is endian converted if needed,
* channels are deintrleaved and audio samples are reordered for use in
* SIMD-friendly analysis filter function. The results are put into "X"
* array, getting appended to the previous data (or it is better to say
* prepended, as the buffer is filled from top to bottom). Old data is
* discarded when neededed, but availability of (10 * nrof_subbands)
* contiguous samples is always guaranteed for the input to the analysis
* filter. This is achieved by copying a sufficient part of old data
* to the top of the buffer on buffer wraparound.
*/
static int sbc_enc_process_input_4s_le(int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels)
{
if (nchannels > 1)
{
return sbc_encoder_process_input_s4_internal(
position, pcm, X, nsamples, 2, 0);
}
else
{
return sbc_encoder_process_input_s4_internal(
position, pcm, X, nsamples, 1, 0);
}
}
static int sbc_enc_process_input_4s_be(int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels)
{
if (nchannels > 1)
{
return sbc_encoder_process_input_s4_internal(
position, pcm, X, nsamples, 2, 1);
}
else
{
return sbc_encoder_process_input_s4_internal(
position, pcm, X, nsamples, 1, 1);
}
}
static int sbc_enc_process_input_8s_le(int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels)
{
if (nchannels > 1)
{
return sbc_encoder_process_input_s8_internal(
position, pcm, X, nsamples, 2, 0);
}
else
{
return sbc_encoder_process_input_s8_internal(
position, pcm, X, nsamples, 1, 0);
}
}
static int sbc_enc_process_input_8s_be(int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels)
{
if (nchannels > 1)
{
return sbc_encoder_process_input_s8_internal(
position, pcm, X, nsamples, 2, 1);
}
else
{
return sbc_encoder_process_input_s8_internal(
position, pcm, X, nsamples, 1, 1);
}
}
/* Supplementary function to count the number of leading zeros */
static inline int sbc_clz(uint32_t x)
{
#ifdef __GNUC__
return __builtin_clz(x);
#else
/* TODO: this should be replaced with something better if good
* performance is wanted when using compilers other than gcc */
int cnt = 0;
while (x)
{
cnt++;
x >>= 1;
}
return 32 - cnt;
#endif
}
static void sbc_calc_scalefactors(
int32_t sb_sample_f[16][2][8],
uint32_t scale_factor[2][8],
int blocks, int channels, int subbands)
{
int ch, sb, blk;
for (ch = 0; ch < channels; ch++)
{
for (sb = 0; sb < subbands; sb++)
{
uint32_t x = 1 << SCALE_OUT_BITS;
for (blk = 0; blk < blocks; blk++)
{
int32_t tmp = fabs(sb_sample_f[blk][ch][sb]);
if (tmp != 0)
{
x |= tmp - 1;
}
}
scale_factor[ch][sb] = (31 - SCALE_OUT_BITS) - sbc_clz(x);
}
}
}
static int sbc_calc_scalefactors_j(int32_t sb_sample_f[16][2][8],
uint32_t scale_factor[2][8],
int blocks, int subbands)
{
int blk, joint = 0;
int32_t tmp0, tmp1;
uint32_t x, y;
/* last subband does not use joint stereo */
int sb = subbands - 1;
x = 1 << SCALE_OUT_BITS;
y = 1 << SCALE_OUT_BITS;
for (blk = 0; blk < blocks; blk++)
{
tmp0 = fabs(sb_sample_f[blk][0][sb]);
tmp1 = fabs(sb_sample_f[blk][1][sb]);
if (tmp0 != 0)
{
x |= tmp0 - 1;
}
if (tmp1 != 0)
{
y |= tmp1 - 1;
}
}
scale_factor[0][sb] = (31 - SCALE_OUT_BITS) - sbc_clz(x);
scale_factor[1][sb] = (31 - SCALE_OUT_BITS) - sbc_clz(y);
/* the rest of subbands can use joint stereo */
while (--sb >= 0)
{
int32_t sb_sample_j[16][2];
x = 1 << SCALE_OUT_BITS;
y = 1 << SCALE_OUT_BITS;
for (blk = 0; blk < blocks; blk++)
{
tmp0 = sb_sample_f[blk][0][sb];
tmp1 = sb_sample_f[blk][1][sb];
sb_sample_j[blk][0] = ASR(tmp0, 1) + ASR(tmp1, 1);
sb_sample_j[blk][1] = ASR(tmp0, 1) - ASR(tmp1, 1);
tmp0 = fabs(tmp0);
tmp1 = fabs(tmp1);
if (tmp0 != 0)
{
x |= tmp0 - 1;
}
if (tmp1 != 0)
{
y |= tmp1 - 1;
}
}
scale_factor[0][sb] = (31 - SCALE_OUT_BITS) - sbc_clz(x);
scale_factor[1][sb] = (31 - SCALE_OUT_BITS) - sbc_clz(y);
x = 1 << SCALE_OUT_BITS;
y = 1 << SCALE_OUT_BITS;
for (blk = 0; blk < blocks; blk++)
{
tmp0 = fabs(sb_sample_j[blk][0]);
tmp1 = fabs(sb_sample_j[blk][1]);
if (tmp0 != 0)
{
x |= tmp0 - 1;
}
if (tmp1 != 0)
{
y |= tmp1 - 1;
}
}
x = (31 - SCALE_OUT_BITS) - sbc_clz(x);
y = (31 - SCALE_OUT_BITS) - sbc_clz(y);
/* decide whether to use joint stereo for this subband */
if ((scale_factor[0][sb] + scale_factor[1][sb]) > x + y)
{
joint |= 1 << (subbands - 1 - sb);
scale_factor[0][sb] = x;
scale_factor[1][sb] = y;
for (blk = 0; blk < blocks; blk++)
{
sb_sample_f[blk][0][sb] = sb_sample_j[blk][0];
sb_sample_f[blk][1][sb] = sb_sample_j[blk][1];
}
}
}
/* bitmask with the information about subbands using joint stereo */
return joint;
}
/*
* Detect CPU features and setup function pointers
*/
void sbc_init_primitives(struct sbc_encoder_state *state)
{
/* Default implementation for analyze functions */
state->sbc_analyze_4s = sbc_analyze_4b_4s_simd;
if (state->increment == 1)
{
state->sbc_analyze_8s = sbc_analyze_1b_8s_simd_odd;
}
else
{
state->sbc_analyze_8s = sbc_analyze_4b_8s_simd;
}
/* Default implementation for input reordering / deinterleaving */
state->sbc_enc_process_input_4s_le = sbc_enc_process_input_4s_le;
state->sbc_enc_process_input_4s_be = sbc_enc_process_input_4s_be;
state->sbc_enc_process_input_8s_le = sbc_enc_process_input_8s_le;
state->sbc_enc_process_input_8s_be = sbc_enc_process_input_8s_be;
/* Default implementation for scale factors calculation */
state->sbc_calc_scalefactors = sbc_calc_scalefactors;
state->sbc_calc_scalefactors_j = sbc_calc_scalefactors_j;
state->implementation_info = "Generic C";
/* X86/AMD64 optimizations */
#ifdef SBC_BUILD_WITH_MMX_SUPPORT
sbc_init_primitives_mmx(state);
#endif
/* ARM optimizations */
#ifdef SBC_BUILD_WITH_ARMV6_SUPPORT
sbc_init_primitives_armv6(state);
#endif
#ifdef SBC_BUILD_WITH_IWMMXT_SUPPORT
sbc_init_primitives_iwmmxt(state);
#endif
#ifdef SBC_BUILD_WITH_NEON_SUPPORT
sbc_init_primitives_neon(state);
if (state->increment == 1)
{
state->sbc_analyze_8s = sbc_analyze_1b_8s_simd_odd;
state->sbc_enc_process_input_4s_le = sbc_enc_process_input_4s_le;
state->sbc_enc_process_input_4s_be = sbc_enc_process_input_4s_be;
state->sbc_enc_process_input_8s_le = sbc_enc_process_input_8s_le;
state->sbc_enc_process_input_8s_be = sbc_enc_process_input_8s_be;
}
#endif
}
#if 0
void pcm_to_sbc(char *filename, char *output, int msbc)
{
sbc_t sbc;
struct stat st;
unsigned char buf[BUF_SIZE], *stream;
int pos, streamlen, framelen, count, channels;
size_t len;
if (stat(filename, &st) < 0)
{
fprintf(stderr, "Can't get size of file %s: %s\n",
filename, strerror(errno));
return;
}
stream = (unsigned char*)malloc(st.st_size);
if (!stream)
{
fprintf(stderr, "Can't allocate memory for %s: %s\n",
filename, strerror(errno));
return;
}
FILE *fp = fopen(filename, "rb");
fseek(fp, sizeof(app_wav_hdr), SEEK_SET);
int r = fread(stream, st.st_size - sizeof(app_wav_hdr), 1, fp);
fclose(fp);
pos = 0;
streamlen = st.st_size;
fp = fopen(output, "wb+");
if (fp < 0)
{
fprintf(stderr, "Can't open output %s: %s\n",
output, strerror(errno));
goto free;
}
if (msbc)
{
sbc_init_msbc(&sbc, 0L);
}
else
{
sbc_init(&sbc, 0L);
}
sbc.endian = SBC_LE;
#define APP_HH_NBYTES_PER_FRAME 57 // each sbc frame size
#define APP_HH_NSAMPLES_PER_FRAME_MSBC 120 // each decoded frame size (must * 2)
int sbc_frame_count = (st.st_size - sizeof(app_wav_hdr)) / 240;
unsigned char *pcm = (unsigned char *)malloc(sbc_frame_count * 57);
printf("sbc_frame_count=%ld\n", sbc_frame_count);
int data_size = 0;
for (int i = 0; i < sbc_frame_count; i++)
{
framelen = sbc_encoder_encode(&sbc, stream + i * 240, 240, pcm + i * 57, 57, &len);
data_size += 57;
}
fwrite(pcm, data_size, 1, fp);
printf("data_size = %ld\n", data_size);
close:
sbc_finish(&sbc);
fclose (fp);
free:
free(stream);
free(pcm);
}
/*
* sbc_to_pcm
*
* filename: sbc.bin file, it's a binary file of sbc raw data
* outfile: wav file path, save the decoded pcm audio stream.
* msbc: whether the sbc file is encoded in msbc mode
*/
void sbc_to_pcm(char *filename, char *output, int msbc)
{
unsigned char buf[BUF_SIZE], *stream;
struct stat st;
sbc_t sbc;
int pos, streamlen, framelen, count, channels;
size_t len;
uint16_t frequency;
ssize_t written;
if (stat(filename, &st) < 0)
{
fprintf(stderr, "Can't get size of file %s: %s\n",
filename, strerror(errno));
return;
}
stream = (unsigned char*)malloc(st.st_size);
if (!stream)
{
fprintf(stderr, "Can't allocate memory for %s: %s\n",
filename, strerror(errno));
return;
}
FILE *fp = fopen(filename, "rb");
int r = fread(stream, st.st_size, 1, fp);
if ((r * st.st_size) != st.st_size)
{
fprintf(stderr, "Can't read content of %s: %s (%d, %d)\n",
filename, strerror(errno), r, st.st_size);
fclose(fp);
goto free;
}
fclose(fp);
pos = 0;
streamlen = st.st_size;
fp = fopen(output, "wb+");
if (fp < 0)
{
fprintf(stderr, "Can't open output %s: %s\n",
output, strerror(errno));
goto free;
}
if (msbc)
{
sbc_init_msbc(&sbc, 0L);
}
else
{
sbc_init(&sbc, 0L);
}
sbc.endian = SBC_LE;
// for processing sbc.bin
// each sbc frame is 57 bytes ===> 120 * 2 = 240 bytes pcm frame
#define APP_HH_NBYTES_PER_FRAME 57 // each sbc frame size
#define APP_HH_NSAMPLES_PER_FRAME_MSBC 120 // each decoded frame size (must * 2)
int sbc_frame_count = st.st_size / 57;
unsigned char *pcm = (unsigned char *)malloc(sbc_frame_count * 240);
printf("sbc_frame_count=%ld\n", sbc_frame_count);
unsigned char nb_channels;
//unsigned char stereo_mode;
unsigned long sample_rate;
unsigned short bits_per_sample;
nb_channels = 1;
sample_rate = 16000;
bits_per_sample = 16;
int byte_rate;
int block_align;
if (bits_per_sample == 8)
{
byte_rate = nb_channels * sizeof(char) * sample_rate;
block_align = nb_channels * sizeof(char);
}
else
{
byte_rate = nb_channels * sizeof(short) * sample_rate;
block_align = nb_channels * sizeof(short);
}
int data_size = 0;
for (int i = 0; i < sbc_frame_count; i++)
{
framelen = sbc_decoder_decode(&sbc, stream + i * 57, 57, pcm + i * 240, 240, &len);
data_size += 240;
}
int chunk_size = data_size + 36;
unsigned char header[APP_WAVE_HDR_SIZE];
/* Copy the standard header */
memcpy(header, app_wav_hdr, sizeof(header));
// Update wav header section
header[4] = (unsigned char)chunk_size;
header[5] = (unsigned char)(chunk_size >> 8);
header[6] = (unsigned char)(chunk_size >> 16);
header[7] = (unsigned char)(chunk_size >> 24);
header[22] = (unsigned char)nb_channels;
header[23] = 0; /* nb_channels is coded on 1 byte only */
header[24] = (unsigned char)sample_rate;
header[25] = (unsigned char)(sample_rate >> 8);
header[26] = (unsigned char)(sample_rate >> 16);
header[27] = (unsigned char)(sample_rate >> 24);
header[28] = (unsigned char)byte_rate;
header[29] = (unsigned char)(byte_rate >> 8);
header[30] = (unsigned char)(byte_rate >> 16);
header[31] = (unsigned char)(byte_rate >> 24);
header[32] = (unsigned char)block_align;
header[33] = (unsigned char)(block_align >> 8);
header[34] = (unsigned char)bits_per_sample;
header[35] = (unsigned char)(bits_per_sample >> 8);
header[40] = (unsigned char)data_size;
header[41] = (unsigned char)(data_size >> 8);
header[42] = (unsigned char)(data_size >> 16);
header[43] = (unsigned char)(data_size >> 24);
fwrite(header, 1, APP_WAVE_HDR_SIZE, fp);
fwrite(pcm, data_size, 1, fp);
printf("data_size = %ld\n", data_size);
close:
sbc_finish(&sbc);
fclose (fp);
free:
free(stream);
free(pcm);
}
#endif
void sbc_decode_init(sbc_t *sbc, int msbc)
{
if (msbc)
{
sbc_init_msbc(sbc, 0L);
}
else
{
sbc_init(sbc, 0L);
}
}
ssize_t sbc_decoder_decode(sbc_t *sbc, const void *input, size_t input_len,
void *output, size_t output_len, size_t *written)
{
return sbc_decode(sbc, input, input_len, output, output_len, written);
}
void sbc_decoder_uninit(sbc_t *sbc)
{
if (!sbc)
{
return;
}
free(sbc->priv_alloc_base);
memset(sbc, 0, sizeof(sbc_t));
}
void sbc_encode_init(sbc_t *sbc, int msbc)
{
if (msbc)
{
sbc_init_msbc(sbc, 0L);
}
else
{
sbc_init(sbc, 0L);
}
}
ssize_t sbc_encoder_encode(sbc_t *sbc, const void *input, size_t input_len,
void *output, size_t output_len, ssize_t *written)
{
return sbc_encode(sbc, input, input_len, output, output_len, written);
}
void sbc_encoder_uninit(sbc_t *sbc)
{
if ( !sbc )
{
return;
}
free(sbc->priv_alloc_base);
memset(sbc, 0, sizeof(sbc_t));
}