3399 lines
114 KiB
C
3399 lines
114 KiB
C
//*****************************************************************************
|
|
//
|
|
// am_hal_iom.c
|
|
//! @file
|
|
//!
|
|
//! @brief Functions for interfacing with the IO Master module
|
|
//!
|
|
//! @addtogroup iom1 IO Master (SPI/I2C)
|
|
//! @ingroup apollo1hal
|
|
//! @{
|
|
//
|
|
//*****************************************************************************
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// Copyright (c) 2020, Ambiq Micro
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its
|
|
// contributors may be used to endorse or promote products derived from this
|
|
// software without specific prior written permission.
|
|
//
|
|
// Third party software included in this distribution is subject to the
|
|
// additional license terms as defined in the /docs/licenses directory.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// This is part of revision 2.4.2 of the AmbiqSuite Development Package.
|
|
//
|
|
//*****************************************************************************
|
|
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include "am_mcu_apollo.h"
|
|
|
|
//! ASSERT(1) or Correct(0) invalid IOM R/W Thresholds.
|
|
#ifndef AM_ASSERT_INVALID_THRESHOLD
|
|
#define AM_ASSERT_INVALID_THRESHOLD (1)
|
|
#endif
|
|
|
|
#define AM_HAL_IOM_TIMEOUT 100000
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// Forward declarations.
|
|
//
|
|
//*****************************************************************************
|
|
static uint32_t
|
|
internal_am_hal_iom_spi_cmd_construct(uint32_t ui32Operation,
|
|
uint32_t ui32ChipSelect,
|
|
uint32_t ui32NumBytes,
|
|
uint32_t ui32Options);
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// IOM Buffer states.
|
|
//
|
|
//*****************************************************************************
|
|
#define BUFFER_IDLE 0x0
|
|
#define BUFFER_SENDING 0x1
|
|
#define BUFFER_RECEIVING 0x2
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// Global state variables
|
|
//
|
|
//*****************************************************************************
|
|
uint32_t g_ui32Mod0Interface = 0;
|
|
uint32_t g_ui32Mod1Interface = 0;
|
|
//
|
|
// Save error status from ISR, particularly for use in I2C queue mode.
|
|
//
|
|
uint32_t g_iom_error_status = 0;
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// Non-blocking buffer and buffer-management variables.
|
|
//
|
|
//*****************************************************************************
|
|
typedef struct
|
|
{
|
|
uint32_t ui32State;
|
|
uint32_t *pui32Data;
|
|
uint32_t ui32BytesLeft;
|
|
uint32_t ui32Options;
|
|
void (*pfnCallback)(void);
|
|
}
|
|
am_hal_iom_nb_buffer;
|
|
|
|
//
|
|
// Global State to keep track if there is an ongoing transaction
|
|
//
|
|
volatile bool g_bIomBusy[AM_REG_IOMSTR_NUM_MODULES] = {0};
|
|
|
|
am_hal_iom_nb_buffer g_psIOMBuffers[AM_REG_IOMSTR_NUM_MODULES];
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// Computed timeout.
|
|
//
|
|
// The IOM may not always respond to events (e.g., CMDCMP). This is a
|
|
// timeout value in cycles to be used when waiting on status changes.
|
|
//*****************************************************************************
|
|
uint32_t ui32StatusTimeout[AM_REG_IOMSTR_NUM_MODULES] = {AM_HAL_IOM_TIMEOUT, AM_HAL_IOM_TIMEOUT};
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// Queue management variables.
|
|
//
|
|
//*****************************************************************************
|
|
am_hal_queue_t g_psIOMQueue[AM_REG_IOMSTR_NUM_MODULES];
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// Default queue flush function
|
|
//
|
|
//*****************************************************************************
|
|
am_hal_iom_queue_flush_t am_hal_iom_queue_flush = am_hal_iom_sleeping_queue_flush;
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Enables the IOM module
|
|
//!
|
|
//! @param ui32Module - The number of the IOM module to be enabled.
|
|
//!
|
|
//! This function enables the IOM module using the IFCEN bitfield in the
|
|
//! IOMSTR_CFG register.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_enable(uint32_t ui32Module)
|
|
{
|
|
if ( ui32Module < AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
AM_REGn(IOMSTR, ui32Module, CFG) |= AM_REG_IOMSTR_CFG_IFCEN(1);
|
|
g_bIomBusy[ui32Module] = false;
|
|
}
|
|
//
|
|
// Make sure the MISO and SCLK inputs are enabled.
|
|
//
|
|
if ( ui32Module == 0 )
|
|
{
|
|
if ( g_ui32Mod0Interface == AM_HAL_IOM_SPIMODE )
|
|
{
|
|
AM_REGn(GPIO, 0, PADKEY) = AM_REG_GPIO_PADKEY_KEYVAL;
|
|
AM_BFW(GPIO, PADREGB, PAD5INPEN, 1);
|
|
AM_BFW(GPIO, PADREGB, PAD6INPEN, 1);
|
|
AM_REGn(GPIO, 0, PADKEY) = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ( g_ui32Mod1Interface == AM_HAL_IOM_SPIMODE )
|
|
{
|
|
AM_REGn(GPIO, 0, PADKEY) = AM_REG_GPIO_PADKEY_KEYVAL;
|
|
AM_BFW(GPIO, PADREGC, PAD8INPEN, 1);
|
|
AM_BFW(GPIO, PADREGC, PAD9INPEN, 1);
|
|
AM_REGn(GPIO, 0, PADKEY) = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Disables the IOM module.
|
|
//!
|
|
//! @param ui32Module - The number of the IOM module to be disabled.
|
|
//!
|
|
//! This function disables the IOM module using the IFCEN bitfield in the
|
|
//! IOMSTR_CFG register.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_disable(uint32_t ui32Module)
|
|
{
|
|
if ( ui32Module < AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
//
|
|
// Wait until the bus is idle.
|
|
//
|
|
am_hal_iom_poll_complete(ui32Module);
|
|
|
|
//
|
|
// Disable the interface.
|
|
//
|
|
AM_REGn(IOMSTR, ui32Module, CFG) &= ~(AM_REG_IOMSTR_CFG_IFCEN(1));
|
|
|
|
//
|
|
// Disable the MISO and SCLK inputs. (Power optimization)
|
|
//
|
|
if ( ui32Module == 0 )
|
|
{
|
|
if ( g_ui32Mod0Interface == AM_HAL_IOM_SPIMODE )
|
|
{
|
|
AM_REGn(GPIO, 0, PADKEY) = AM_REG_GPIO_PADKEY_KEYVAL;
|
|
AM_BFW(GPIO, PADREGB, PAD5INPEN, 0);
|
|
AM_BFW(GPIO, PADREGB, PAD6INPEN, 0);
|
|
AM_REGn(GPIO, 0, PADKEY) = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ( g_ui32Mod1Interface == AM_HAL_IOM_SPIMODE )
|
|
{
|
|
AM_REGn(GPIO, 0, PADKEY) = AM_REG_GPIO_PADKEY_KEYVAL;
|
|
AM_BFW(GPIO, PADREGC, PAD8INPEN, 0);
|
|
AM_BFW(GPIO, PADREGC, PAD9INPEN, 0);
|
|
AM_REGn(GPIO, 0, PADKEY) = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
//! Check and correct the IOM FIFO threshold.
|
|
//
|
|
#define MAX_RW_THRESHOLD (AM_HAL_IOM_MAX_FIFO_SIZE - 4)
|
|
#define MIN_RW_THRESHOLD (4)
|
|
#if ( AM_ASSERT_INVALID_THRESHOLD == 0 )
|
|
static uint8_t check_iom_threshold(const uint8_t iom_threshold)
|
|
{
|
|
uint8_t corrected_threshold = iom_threshold;
|
|
|
|
if ( corrected_threshold < MIN_RW_THRESHOLD )
|
|
{
|
|
corrected_threshold = MIN_RW_THRESHOLD;
|
|
}
|
|
|
|
if ( corrected_threshold > MAX_RW_THRESHOLD )
|
|
{
|
|
corrected_threshold = MAX_RW_THRESHOLD;
|
|
}
|
|
|
|
return corrected_threshold;
|
|
}
|
|
#endif
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Sets module-wide configuration options for the IOM module.
|
|
//!
|
|
//! @param ui32Module - The instance number for the module to be configured
|
|
//! (zero or one)
|
|
//!
|
|
//! @param psConfig - Pointer to an IOM configuration structure.
|
|
//!
|
|
//! This function is used to set the interface mode (SPI or I2C), clock
|
|
//! frequency, SPI format (when relevant), and FIFO read/write interrupt
|
|
//! thresholds for the IO master. For more information on specific
|
|
//! configuration options, please see the documentation for the configuration
|
|
//! structure.
|
|
//!
|
|
//! @note The IOM module should be disabled before configuring or
|
|
//! re-configuring. This function will not re-enable the module when it
|
|
//! completes. Call the am_hal_iom_enable function when the module is
|
|
//! configured and ready to use.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_config(uint32_t ui32Module, const am_hal_iom_config_t *psConfig)
|
|
{
|
|
uint32_t ui32Config;
|
|
|
|
//
|
|
// Start by checking the interface mode (I2C or SPI), and writing it to the
|
|
// configuration word.
|
|
//
|
|
ui32Config = psConfig->ui32InterfaceMode;
|
|
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Also store the interface mode to a global state variable.
|
|
//
|
|
if ( ui32Module == 0 )
|
|
{
|
|
g_ui32Mod0Interface = psConfig->ui32InterfaceMode;
|
|
}
|
|
else
|
|
{
|
|
g_ui32Mod1Interface = psConfig->ui32InterfaceMode;
|
|
}
|
|
|
|
//
|
|
// Check the SPI format, and OR in the bits for SPHA (clock phase) and SPOL
|
|
// (polarity). These shouldn't have any effect in I2C mode, so it should be
|
|
// ok to write them without checking exactly which mode we're in.
|
|
//
|
|
if ( psConfig->bSPHA )
|
|
{
|
|
ui32Config |= AM_REG_IOMSTR_CFG_SPHA(1);
|
|
}
|
|
|
|
if ( psConfig->bSPOL )
|
|
{
|
|
ui32Config |= AM_REG_IOMSTR_CFG_SPOL(1);
|
|
}
|
|
|
|
//
|
|
// Write the resulting configuration word to the IO master CFG register for
|
|
// the module number we were provided.
|
|
//
|
|
AM_REGn(IOMSTR, ui32Module, CFG) = ui32Config;
|
|
|
|
//
|
|
// Write the FIFO write and read thresholds to the appropriate registers.
|
|
//
|
|
#if (AM_ASSERT_INVALID_THRESHOLD == 1)
|
|
am_hal_debug_assert_msg(
|
|
(psConfig->ui8WriteThreshold <= MAX_RW_THRESHOLD), "IOM write threshold too big.");
|
|
am_hal_debug_assert_msg(
|
|
(psConfig->ui8ReadThreshold <= MAX_RW_THRESHOLD), "IOM read threshold too big.");
|
|
am_hal_debug_assert_msg(
|
|
(psConfig->ui8WriteThreshold >= MIN_RW_THRESHOLD), "IOM write threshold too small.");
|
|
am_hal_debug_assert_msg(
|
|
(psConfig->ui8ReadThreshold >= MIN_RW_THRESHOLD), "IOM read threshold too small.");
|
|
|
|
AM_REGn(IOMSTR, ui32Module, FIFOTHR) =
|
|
(AM_REG_IOMSTR_FIFOTHR_FIFOWTHR(psConfig->ui8WriteThreshold) |
|
|
AM_REG_IOMSTR_FIFOTHR_FIFORTHR(psConfig->ui8ReadThreshold));
|
|
#elif (AM_ASSERT_INVALID_THRESHOLD == 0)
|
|
AM_REGn(IOMSTR, ui32Module, FIFOTHR) =
|
|
(AM_REG_IOMSTR_FIFOTHR_FIFOWTHR(check_iom_threshold(psConfig->ui8WriteThreshold)) |
|
|
AM_REG_IOMSTR_FIFOTHR_FIFORTHR(check_iom_threshold(psConfig->ui8ReadThreshold)));
|
|
#else
|
|
#error AM_ASSERT_INVALID_THRESHOLD must be 0 or 1.
|
|
#endif
|
|
|
|
// Finally, write the clock configuration register with the caller-supplied
|
|
// value.
|
|
//
|
|
AM_REGn(IOMSTR, ui32Module, CLKCFG) = psConfig->ui32ClockFrequency;
|
|
}
|
|
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Perform a simple write to the SPI interface.
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM
|
|
//! @param ui32ChipSelect - Chip-select number for this transaction.
|
|
//! @param pui32Data - Pointer to the bytes that will be sent.
|
|
//! @param ui32NumBytes - Number of bytes to send.
|
|
//! @param ui32Options - Additional SPI transfer options.
|
|
//!
|
|
//! This function performs SPI writes to a selected SPI device.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This means that you will need to byte-pack the \e pui32Data array with the
|
|
//! data you intend to send over the interface. One easy way to do this is to
|
|
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
|
|
//! put your actual data into the array. If there are not enough bytes in your
|
|
//! desired message to completely fill the last 32-bit word, you may pad that
|
|
//! last word with bytes of any value. The IOM hardware will only read the
|
|
//! first \e ui32NumBytes in the \e pui8Data array.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_spi_write(uint32_t ui32Module, uint32_t ui32ChipSelect,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
|
|
"Trying to use an IOM module that doesn't exist.");
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
//
|
|
// Check to see if queues have been enabled. If they are, we'll actually
|
|
// switch to the queued interface.
|
|
//
|
|
if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
|
|
{
|
|
//
|
|
// If the queue is on, go ahead and add this transaction to the queue.
|
|
//
|
|
am_hal_iom_queue_spi_write(ui32Module, ui32ChipSelect, pui32Data,
|
|
ui32NumBytes, ui32Options, 0);
|
|
|
|
//
|
|
// Wait until the transaction actually clears.
|
|
//
|
|
am_hal_iom_queue_flush(ui32Module);
|
|
|
|
//
|
|
// At this point, we've completed the transaction, and we can return.
|
|
//
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// Otherwise, we'll just do a polled transaction.
|
|
//
|
|
am_hal_iom_spi_write_nq(ui32Module, ui32ChipSelect, pui32Data,
|
|
ui32NumBytes, ui32Options);
|
|
}
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Perform simple SPI read operations.
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM
|
|
//! @param ui32ChipSelect - Chip-select number for this transaction.
|
|
//! @param pui32Data - Pointer to the array where received bytes should go.
|
|
//! @param ui32NumBytes - Number of bytes to read.
|
|
//! @param ui32Options - Additional SPI transfer options.
|
|
//!
|
|
//! This function performs simple SPI read operations. The caller is
|
|
//! responsible for ensuring that the receive buffer is large enough to hold
|
|
//! the requested amount of data.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This function will pack the individual bytes from the physical interface
|
|
//! into 32-bit words, which are then placed into the \e pui32Data array. Only
|
|
//! the first \e ui32NumBytes bytes in this array will contain valid data.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_spi_read(uint32_t ui32Module, uint32_t ui32ChipSelect,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
|
|
"Trying to use an IOM module that doesn't exist.");
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
//
|
|
// Make sure the transfer isn't too long for the hardware to support.
|
|
//
|
|
am_hal_debug_assert_msg(ui32NumBytes < 4096, "SPI transfer too big.");
|
|
|
|
//
|
|
// Check to see if queues have been enabled. If they are, we'll actually
|
|
// switch to the queued interface.
|
|
//
|
|
if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
|
|
{
|
|
//
|
|
// If the queue is on, go ahead and add this transaction to the queue.
|
|
//
|
|
am_hal_iom_queue_spi_read(ui32Module, ui32ChipSelect, pui32Data,
|
|
ui32NumBytes, ui32Options, 0);
|
|
|
|
//
|
|
// Wait until the transaction actually clears.
|
|
//
|
|
am_hal_iom_queue_flush(ui32Module);
|
|
|
|
//
|
|
// At this point, we've completed the transaction, and we can return.
|
|
//
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// Otherwise, just perform a polled transaction.
|
|
//
|
|
am_hal_iom_spi_read_nq(ui32Module, ui32ChipSelect, pui32Data,
|
|
ui32NumBytes, ui32Options);
|
|
}
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Perform a simple write to the SPI interface (without queuing)
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM
|
|
//! @param ui32ChipSelect - Chip-select number for this transaction.
|
|
//! @param pui32Data - Pointer to the bytes that will be sent.
|
|
//! @param ui32NumBytes - Number of bytes to send.
|
|
//! @param ui32Options - Additional SPI transfer options.
|
|
//!
|
|
//! This function performs SPI writes to a selected SPI device.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This means that you will need to byte-pack the \e pui32Data array with the
|
|
//! data you intend to send over the interface. One easy way to do this is to
|
|
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
|
|
//! put your actual data into the array. If there are not enough bytes in your
|
|
//! desired message to completely fill the last 32-bit word, you may pad that
|
|
//! last word with bytes of any value. The IOM hardware will only read the
|
|
//! first \e ui32NumBytes in the \e pui8Data array.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
uint32_t
|
|
am_hal_iom_spi_write_nq(uint32_t ui32Module, uint32_t ui32ChipSelect,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options)
|
|
{
|
|
uint32_t ui32TransferSize;
|
|
uint32_t ui32SpaceInFifo;
|
|
uint32_t ui32IntConfig;
|
|
uint32_t ui32Status = 1;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
|
|
"Trying to use an IOM module that doesn't exist.");
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
//
|
|
// Make sure the transfer isn't too long for the hardware to support.
|
|
//
|
|
am_hal_debug_assert_msg(ui32NumBytes < 4096, "SPI transfer too big.");
|
|
|
|
//
|
|
// Wait until any earlier transactions have completed.
|
|
//
|
|
am_hal_iom_poll_complete(ui32Module);
|
|
//
|
|
// Disable interrupts so that we don't get any undesired interrupts.
|
|
//
|
|
ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
|
|
AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
|
|
// Clear CMDCMP status
|
|
AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
|
|
|
|
//
|
|
// Figure out how many bytes we can write to the FIFO immediately.
|
|
//
|
|
ui32TransferSize = (ui32NumBytes <= AM_HAL_IOM_MAX_FIFO_SIZE ? ui32NumBytes :
|
|
AM_HAL_IOM_MAX_FIFO_SIZE);
|
|
//
|
|
// write our first word to the fifo.
|
|
//
|
|
|
|
am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
|
|
|
|
//
|
|
// Start the write on the bus.
|
|
//
|
|
am_hal_iom_spi_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32ChipSelect,
|
|
ui32NumBytes, ui32Options);
|
|
|
|
//
|
|
// Update the pointer and data counter.
|
|
//
|
|
ui32NumBytes -= ui32TransferSize;
|
|
pui32Data += ui32TransferSize >> 2;
|
|
|
|
//
|
|
// Keep looping until we're out of bytes to send or command complete (error).
|
|
//
|
|
while ( ui32NumBytes && !AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP) )
|
|
{
|
|
//
|
|
// This will always return a multiple of four.
|
|
//
|
|
ui32SpaceInFifo = am_hal_iom_fifo_empty_slots(ui32Module);
|
|
|
|
if ( ui32NumBytes <= ui32SpaceInFifo )
|
|
{
|
|
//
|
|
// If the entire message will fit in the fifo, prepare to copy
|
|
// everything.
|
|
//
|
|
ui32TransferSize = ui32NumBytes;
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// If only a portion of the message will fit in the fifo, prepare
|
|
// to copy the largest number of 4-byte blocks possible.
|
|
//
|
|
ui32TransferSize = ui32SpaceInFifo & ~(0x3);
|
|
}
|
|
|
|
//
|
|
// Write this chunk to the fifo.
|
|
//
|
|
am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
|
|
|
|
//
|
|
// Update the data pointer and bytes-left count.
|
|
//
|
|
ui32NumBytes -= ui32TransferSize;
|
|
pui32Data += ui32TransferSize >> 2;
|
|
}
|
|
|
|
//
|
|
// Make sure CMDCMP was raised with standard timeout
|
|
//
|
|
ui32Status = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
|
|
AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
|
|
AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
|
|
|
|
//
|
|
// Re-enable IOM interrupts. Make sure CMDCMP is cleared
|
|
//
|
|
AM_REGn(IOMSTR, ui32Module, INTCLR) = (ui32IntConfig | AM_REG_IOMSTR_INTSTAT_CMDCMP_M);
|
|
AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
|
|
|
|
am_hal_debug_assert_msg(ui32Status == 1, "IOM CMDCMP was not seen");
|
|
|
|
//
|
|
// Return the status (0 = timeout; 1 = success)
|
|
//
|
|
return ui32Status;
|
|
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Perform simple SPI read operations (without queuing).
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM
|
|
//! @param ui32ChipSelect - Chip-select number for this transaction.
|
|
//! @param pui32Data - Pointer to the array where received bytes should go.
|
|
//! @param ui32NumBytes - Number of bytes to read.
|
|
//! @param ui32Options - Additional SPI transfer options.
|
|
//!
|
|
//! This function performs simple SPI read operations. The caller is
|
|
//! responsible for ensuring that the receive buffer is large enough to hold
|
|
//! the requested amount of data.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This function will pack the individual bytes from the physical interface
|
|
//! into 32-bit words, which are then placed into the \e pui32Data array. Only
|
|
//! the first \e ui32NumBytes bytes in this array will contain valid data.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
uint32_t
|
|
am_hal_iom_spi_read_nq(uint32_t ui32Module, uint32_t ui32ChipSelect,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options)
|
|
{
|
|
uint32_t ui32BytesInFifo;
|
|
uint32_t ui32IntConfig;
|
|
uint32_t bCmdCmp = false;
|
|
uint32_t ui32Status = 1;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
|
|
"Trying to use an IOM module that doesn't exist.");
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
//
|
|
// Make sure the transfer isn't too long for the hardware to support.
|
|
//
|
|
am_hal_debug_assert_msg(ui32NumBytes < 4096, "SPI transfer too big.");
|
|
|
|
//
|
|
// Wait until the bus is idle, then start the requested READ transfer on
|
|
// the physical interface.
|
|
//
|
|
am_hal_iom_poll_complete(ui32Module);
|
|
|
|
//
|
|
// Disable interrupts so that we don't get any undesired interrupts.
|
|
//
|
|
ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
|
|
|
|
//
|
|
// Disable IOM interrupts as we'll be polling
|
|
//
|
|
AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
|
|
|
|
//
|
|
// Clear CMDCMP status
|
|
//
|
|
AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
|
|
|
|
am_hal_iom_spi_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32ChipSelect,
|
|
ui32NumBytes, ui32Options);
|
|
|
|
//
|
|
// Start a loop to catch the Rx data.
|
|
//
|
|
while ( ui32NumBytes )
|
|
{
|
|
ui32BytesInFifo = am_hal_iom_fifo_full_slots(ui32Module);
|
|
|
|
if ( ui32BytesInFifo >= ui32NumBytes )
|
|
{
|
|
//
|
|
// If the fifo contains our entire message, just copy the whole
|
|
// thing out.
|
|
//
|
|
am_hal_iom_fifo_read(ui32Module, pui32Data, ui32NumBytes);
|
|
ui32NumBytes = 0;
|
|
}
|
|
else if ( ui32BytesInFifo >= 4 )
|
|
{
|
|
//
|
|
// If the fifo has at least one 32-bit word in it, copy whole
|
|
// words out.
|
|
//
|
|
am_hal_iom_fifo_read(ui32Module, pui32Data, ui32BytesInFifo & ~0x3);
|
|
ui32NumBytes -= ui32BytesInFifo & ~0x3;
|
|
pui32Data += ui32BytesInFifo >> 2;
|
|
}
|
|
if ( bCmdCmp == true )
|
|
{
|
|
//
|
|
// No more data expected. Get out of the loop
|
|
//
|
|
break;
|
|
}
|
|
|
|
bCmdCmp = AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP);
|
|
}
|
|
|
|
//
|
|
// Make sure CMDCMP was raised,
|
|
//
|
|
ui32Status = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
|
|
AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
|
|
AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
|
|
|
|
//
|
|
// Re-enable IOM interrupts. Make sure CMDCMP is cleared
|
|
//
|
|
AM_REGn(IOMSTR, ui32Module, INTCLR) = (ui32IntConfig | AM_REG_IOMSTR_INTSTAT_CMDCMP_M);
|
|
AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
|
|
|
|
am_hal_debug_assert_msg(ui32Status == 1, "IOM CMDCMP was not seen");
|
|
|
|
//
|
|
// Return the status (0 = timeout; 1 = success)
|
|
//
|
|
return ui32Status;
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Perform a non-blocking write to the SPI interface.
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM
|
|
//! @param ui32ChipSelect - Chip-select number for this transaction.
|
|
//! @param pui32Data - Pointer to the bytes that will be sent.
|
|
//! @param ui32NumBytes - Number of bytes to send.
|
|
//! @param ui32Options - Additional SPI transfer options.
|
|
//! @param pfnCallback - Function to call when the transaction completes.
|
|
//!
|
|
//! This function performs SPI writes to the selected SPI device.
|
|
//!
|
|
//! This function call is a non-blocking implementation. It will write as much
|
|
//! data to the FIFO as possible immediately, store a pointer to the remaining
|
|
//! data, start the transfer on the bus, and then immediately return. The
|
|
//! caller will need to make sure that \e am_hal_iom_int_service() is called
|
|
//! for IOM FIFO interrupt events and "command complete" interrupt events. The
|
|
//! \e am_hal_iom_int_service() function will refill the FIFO as necessary and
|
|
//! call the \e pfnCallback function when the transaction is finished.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This means that you will need to byte-pack the \e pui32Data array with the
|
|
//! data you intend to send over the interface. One easy way to do this is to
|
|
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
|
|
//! put your actual data into the array. If there are not enough bytes in your
|
|
//! desired message to completely fill the last 32-bit word, you may pad that
|
|
//! last word with bytes of any value. The IOM hardware will only read the
|
|
//! first \e ui32NumBytes in the \e pui8Data array.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_spi_write_nb(uint32_t ui32Module, uint32_t ui32ChipSelect,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options,
|
|
am_hal_iom_callback_t pfnCallback)
|
|
{
|
|
uint32_t ui32TransferSize;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Make sure the transfer isn't too long for the hardware to support.
|
|
//
|
|
am_hal_debug_assert_msg(ui32NumBytes < 4096, "SPI transfer too big.");
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
|
|
//
|
|
// Wait until the bus is idle
|
|
//
|
|
am_hal_iom_poll_complete(ui32Module);
|
|
|
|
//
|
|
// Need to mark IOM busy to avoid another transaction to be scheduled.
|
|
// This is to take care of a race condition in Queue mode, where the IDLE
|
|
// set is not a guarantee that the CMDCMP has been received
|
|
//
|
|
g_bIomBusy[ui32Module] = true;
|
|
|
|
//
|
|
// Clear CMDCMP status
|
|
//
|
|
AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
|
|
|
|
//
|
|
// Figure out how many bytes we can write to the FIFO immediately.
|
|
//
|
|
ui32TransferSize = (ui32NumBytes <= AM_HAL_IOM_MAX_FIFO_SIZE ? ui32NumBytes :
|
|
AM_HAL_IOM_MAX_FIFO_SIZE);
|
|
|
|
if ( am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize) > 0 )
|
|
{
|
|
//
|
|
// Prepare the global IOM buffer structure.
|
|
//
|
|
g_psIOMBuffers[ui32Module].ui32State = BUFFER_SENDING;
|
|
g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
|
|
g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
|
|
g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
|
|
g_psIOMBuffers[ui32Module].ui32Options = ui32Options;
|
|
|
|
//
|
|
// Update the pointer and the byte counter based on the portion of
|
|
// the transfer we just sent to the fifo.
|
|
//
|
|
g_psIOMBuffers[ui32Module].ui32BytesLeft -= ui32TransferSize;
|
|
g_psIOMBuffers[ui32Module].pui32Data += (ui32TransferSize / 4);
|
|
|
|
//
|
|
// Start the write on the bus.
|
|
//
|
|
am_hal_iom_spi_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32ChipSelect,
|
|
ui32NumBytes, ui32Options);
|
|
}
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Perform a non-blocking SPI read.
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM.
|
|
//! @param ui32ChipSelect - Chip select number of the target device.
|
|
//! @param pui32Data - Pointer to the array where received bytes should go.
|
|
//! @param ui32NumBytes - Number of bytes to read.
|
|
//! @param ui32Options - Additional SPI transfer options.
|
|
//! @param pfnCallback - Function to call when the transaction completes.
|
|
//!
|
|
//! This function performs SPI reads to a selected SPI device.
|
|
//!
|
|
//! This function call is a non-blocking implementation. It will start the SPI
|
|
//! transaction on the bus and store a pointer for the destination for the read
|
|
//! data, but it will not wait for the SPI transaction to finish. The caller
|
|
//! will need to make sure that \e am_hal_iom_int_service() is called for IOM
|
|
//! FIFO interrupt events and "command complete" interrupt events. The \e
|
|
//! am_hal_iom_int_service() function will empty the FIFO as necessary,
|
|
//! transfer the data to the \e pui32Data buffer, and call the \e pfnCallback
|
|
//! function when the transaction is finished.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This function will pack the individual bytes from the physical interface
|
|
//! into 32-bit words, which are then placed into the \e pui32Data array. Only
|
|
//! the first \e ui32NumBytes bytes in this array will contain valid data.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
uint32_t
|
|
am_hal_iom_spi_read_nb(uint32_t ui32Module, uint32_t ui32ChipSelect,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options,
|
|
am_hal_iom_callback_t pfnCallback)
|
|
{
|
|
uint32_t ui32Status = 1;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
|
|
"Trying to use an IOM module that doesn't exist.");
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
//
|
|
// Make sure the transfer isn't too long for the hardware to support.
|
|
//
|
|
am_hal_debug_assert_msg(ui32NumBytes < 4096, "SPI transfer too big.");
|
|
|
|
//
|
|
// Wait until the bus is idle
|
|
//
|
|
am_hal_iom_poll_complete(ui32Module);
|
|
|
|
//
|
|
// Need to mark IOM busy to avoid another transaction to be scheduled.
|
|
// This is to take care of a race condition in Queue mode, where the IDLE
|
|
// set is not a guarantee that the CMDCMP has been received
|
|
//
|
|
|
|
g_bIomBusy[ui32Module] = true;
|
|
|
|
//
|
|
// Clear CMDCMP status
|
|
//
|
|
AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
|
|
|
|
//
|
|
// Prepare the global IOM buffer structure.
|
|
//
|
|
g_psIOMBuffers[ui32Module].ui32State = BUFFER_RECEIVING;
|
|
g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
|
|
g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
|
|
g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
|
|
g_psIOMBuffers[ui32Module].ui32Options = ui32Options;
|
|
|
|
//
|
|
// Start the read transaction on the bus.
|
|
//
|
|
am_hal_iom_spi_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32ChipSelect,
|
|
ui32NumBytes, ui32Options);
|
|
|
|
am_hal_debug_assert_msg(ui32Status == 1, "IOM CMDCMP was not seen");
|
|
|
|
return ui32Status;
|
|
}
|
|
|
|
static uint32_t
|
|
internal_am_hal_iom_spi_cmd_construct(uint32_t ui32Operation,
|
|
uint32_t ui32ChipSelect,
|
|
uint32_t ui32NumBytes,
|
|
uint32_t ui32Options)
|
|
{
|
|
uint32_t ui32Command;
|
|
//
|
|
// Start building the command from the operation parameter.
|
|
//
|
|
ui32Command = ui32Operation;
|
|
|
|
//
|
|
// Set the transfer length (the length field is split, so this requires
|
|
// some swizzling).
|
|
//
|
|
ui32Command |= ((ui32NumBytes & 0xF00) << 15);
|
|
ui32Command |= (ui32NumBytes & 0xFF);
|
|
|
|
//
|
|
// Set the chip select number.
|
|
//
|
|
ui32Command |= ((ui32ChipSelect << 16) & 0x00070000);
|
|
|
|
//
|
|
// Finally, OR in the rest of the options. This mask should make sure that
|
|
// erroneous option values won't interfere with the other transfer
|
|
// parameters.
|
|
//
|
|
ui32Command |= ui32Options & 0x5C00FF00;
|
|
return ui32Command;
|
|
}
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Runs a SPI "command" through the IO master.
|
|
//!
|
|
//! @param ui32Operation - SPI action to be performed.
|
|
//!
|
|
//! @param psDevice - Structure containing information about the slave device.
|
|
//!
|
|
//! @param ui32NumBytes - Number of bytes to move (transmit or receive) with
|
|
//! this command.
|
|
//!
|
|
//! @param ui32Options - Additional SPI options to apply to this command.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_spi_cmd_run(uint32_t ui32Operation, uint32_t ui32Module,
|
|
uint32_t ui32ChipSelect, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options)
|
|
{
|
|
uint32_t ui32Command;
|
|
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
ui32Command = internal_am_hal_iom_spi_cmd_construct(ui32Operation,
|
|
ui32ChipSelect, ui32NumBytes, ui32Options);
|
|
|
|
|
|
//
|
|
// Write the complete command word to the IOM command register.
|
|
//
|
|
AM_REGn(IOMSTR, ui32Module, CMD) = ui32Command;
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Perform a simple write to the I2C interface (without queuing)
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM.
|
|
//! @param ui32BusAddress - I2C address of the target device.
|
|
//! @param pui32Data - Pointer to the bytes that will be sent.
|
|
//! @param ui32NumBytes - Number of bytes to send.
|
|
//! @param ui32Options - Additional I2C transfer options.
|
|
//!
|
|
//! This function performs I2C writes to a selected I2C device.
|
|
//!
|
|
//! This function call is a blocking implementation. It will write as much
|
|
//! data to the FIFO as possible immediately, and then refill the FIFO as data
|
|
//! is transmiitted.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words
|
|
//! This means that you will need to byte-pack the \e pui32Data array with the
|
|
//! data you intend to send over the interface. One easy way to do this is to
|
|
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
|
|
//! put your actual data into the array. If there are not enough bytes in your
|
|
//! desired message to completely fill the last 32-bit word, you may pad that
|
|
//! last word with bytes of any value. The IOM hardware will only read the
|
|
//! first \e ui32NumBytes in the \e pui32Data array.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
uint32_t
|
|
am_hal_iom_i2c_write_nq(uint32_t ui32Module, uint32_t ui32BusAddress,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options)
|
|
{
|
|
uint32_t ui32TransferSize;
|
|
uint32_t ui32SpaceInFifo;
|
|
uint32_t ui32IntConfig;
|
|
uint32_t ui32Status = 1;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return 0;
|
|
}
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
//
|
|
// Redirect to the bit-bang interface if the module number matches the
|
|
// software I2C module.
|
|
//
|
|
if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
|
|
{
|
|
if ( ui32Options & AM_HAL_IOM_RAW )
|
|
{
|
|
am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
|
|
(uint8_t *)pui32Data, 0, false,
|
|
(ui32Options & AM_HAL_IOM_NO_STOP));
|
|
}
|
|
else
|
|
{
|
|
am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
|
|
(uint8_t *)pui32Data,
|
|
((ui32Options & 0xFF00) >> 8),
|
|
true,
|
|
(ui32Options & AM_HAL_IOM_NO_STOP));
|
|
}
|
|
|
|
//
|
|
// Return.
|
|
//
|
|
return 0;
|
|
}
|
|
|
|
//
|
|
// Make sure the transfer isn't too long for the hardware to support.
|
|
//
|
|
am_hal_debug_assert_msg(ui32NumBytes < 256, "I2C transfer too big.");
|
|
|
|
|
|
//
|
|
// Wait until any earlier transactions have completed.
|
|
//
|
|
am_hal_iom_poll_complete(ui32Module);
|
|
|
|
//
|
|
// Disable interrupts so that we don't get any undesired interrupts.
|
|
//
|
|
ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
|
|
AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
|
|
|
|
//
|
|
// Clear CMDCMP status
|
|
//
|
|
AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
|
|
|
|
//
|
|
// Figure out how many bytes we can write to the FIFO immediately.
|
|
//
|
|
ui32TransferSize = (ui32NumBytes <= AM_HAL_IOM_MAX_FIFO_SIZE ? ui32NumBytes :
|
|
AM_HAL_IOM_MAX_FIFO_SIZE);
|
|
|
|
am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
|
|
|
|
//
|
|
// Start the write on the bus.
|
|
//
|
|
am_hal_iom_i2c_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32BusAddress,
|
|
ui32NumBytes, ui32Options);
|
|
|
|
//
|
|
// Update the pointer and data counter.
|
|
//
|
|
ui32NumBytes -= ui32TransferSize;
|
|
pui32Data += ui32TransferSize >> 2;
|
|
|
|
//
|
|
// Keep looping until we're out of bytes to send or command complete (error).
|
|
//
|
|
while ( ui32NumBytes && !AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP) )
|
|
{
|
|
//
|
|
// This will always return a multiple of four.
|
|
//
|
|
ui32SpaceInFifo = am_hal_iom_fifo_empty_slots(ui32Module);
|
|
|
|
if ( ui32NumBytes <= ui32SpaceInFifo )
|
|
{
|
|
//
|
|
// If the entire message will fit in the fifo, prepare to copy
|
|
// everything.
|
|
//
|
|
ui32TransferSize = ui32NumBytes;
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// If only a portion of the message will fit in the fifo, prepare
|
|
// to copy the largest number of 4-byte blocks possible.
|
|
//
|
|
ui32TransferSize = ui32SpaceInFifo;
|
|
}
|
|
|
|
//
|
|
// Write this chunk to the fifo.
|
|
//
|
|
am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
|
|
|
|
//
|
|
// Update the data pointer and bytes-left count.
|
|
//
|
|
ui32NumBytes -= ui32TransferSize;
|
|
pui32Data += ui32TransferSize >> 2;
|
|
}
|
|
|
|
//
|
|
// Make sure CMDCMP was raised,
|
|
//
|
|
ui32Status = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
|
|
AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
|
|
AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
|
|
|
|
//
|
|
// Re-enable IOM interrupts. Make sure CMDCMP is cleared
|
|
//
|
|
AM_REGn(IOMSTR, ui32Module, INTCLR) = (ui32IntConfig | AM_REG_IOMSTR_INTSTAT_CMDCMP_M);
|
|
AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
|
|
|
|
am_hal_debug_assert_msg(ui32Status == 1, "IOM CMDCMP was not seen");
|
|
|
|
//
|
|
// Return the status (0 = timeout; 1 = success)
|
|
//
|
|
return ui32Status;
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Perform simple I2C read operations (without queuing).
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM.
|
|
//! @param ui32BusAddress - I2C address of the target device.
|
|
//! @param pui32Data - Pointer to the array where received bytes should go.
|
|
//! @param ui32NumBytes - Number of bytes to read.
|
|
//! @param ui32Options - Additional I2C transfer options.
|
|
//!
|
|
//! This function performs an I2C read to a selected I2C device.
|
|
//!
|
|
//! This function call is a blocking implementation. It will read as much
|
|
//! data from the FIFO as possible immediately, and then re-read the FIFO as more
|
|
//! data is available.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This function will pack the individual bytes from the physical interface
|
|
//! into 32-bit words, which are then placed into the \e pui32Data array. Only
|
|
//! the first \e ui32NumBytes bytes in this array will contain valid data.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
uint32_t
|
|
am_hal_iom_i2c_read_nq(uint32_t ui32Module, uint32_t ui32BusAddress,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options)
|
|
{
|
|
uint32_t ui32BytesInFifo;
|
|
uint32_t ui32IntConfig;
|
|
uint32_t bCmdCmp = false;
|
|
uint32_t ui32Status = 1;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return 0;
|
|
}
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
//
|
|
// Redirect to the bit-bang interface if the module number matches the
|
|
// software I2C module.
|
|
//
|
|
if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
|
|
{
|
|
if ( ui32Options & AM_HAL_IOM_RAW )
|
|
{
|
|
am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
|
|
(uint8_t *)pui32Data, 0, false,
|
|
(ui32Options & AM_HAL_IOM_NO_STOP));
|
|
}
|
|
else
|
|
{
|
|
am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
|
|
(uint8_t *)pui32Data,
|
|
((ui32Options & 0xFF00) >> 8),
|
|
true,
|
|
(ui32Options & AM_HAL_IOM_NO_STOP));
|
|
}
|
|
|
|
//
|
|
// Return.
|
|
//
|
|
return 0;
|
|
}
|
|
|
|
//
|
|
// Make sure the transfer isn't too long for the hardware to support.
|
|
//
|
|
am_hal_debug_assert_msg(ui32NumBytes < 256, "I2C transfer too big.");
|
|
|
|
//
|
|
// Wait until the bus is idle
|
|
//
|
|
am_hal_iom_poll_complete(ui32Module);
|
|
|
|
//
|
|
// Disable interrupts so that we don't get any undesired interrupts.
|
|
//
|
|
ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
|
|
AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
|
|
|
|
//
|
|
// Clear CMDCMP status
|
|
//
|
|
AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
|
|
|
|
am_hal_iom_i2c_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32BusAddress,
|
|
ui32NumBytes, ui32Options);
|
|
|
|
//
|
|
// Start a loop to catch the Rx data.
|
|
//
|
|
while ( ui32NumBytes )
|
|
{
|
|
ui32BytesInFifo = am_hal_iom_fifo_full_slots(ui32Module);
|
|
|
|
if ( ui32BytesInFifo >= ui32NumBytes )
|
|
{
|
|
//
|
|
// If the fifo contains our entire message, just copy the whole
|
|
// thing out.
|
|
//
|
|
am_hal_iom_fifo_read(ui32Module, pui32Data, ui32NumBytes);
|
|
ui32NumBytes = 0;
|
|
}
|
|
else if ( ui32BytesInFifo >= 4 )
|
|
{
|
|
//
|
|
// If the fifo has at least one 32-bit word in it, copy whole
|
|
// words out.
|
|
//
|
|
am_hal_iom_fifo_read(ui32Module, pui32Data, ui32BytesInFifo & ~0x3);
|
|
|
|
ui32NumBytes -= ui32BytesInFifo & ~0x3;
|
|
pui32Data += ui32BytesInFifo >> 2;
|
|
}
|
|
|
|
if ( bCmdCmp == true )
|
|
{
|
|
// No more data expected - exit out of loop
|
|
break;
|
|
}
|
|
|
|
bCmdCmp = AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP);
|
|
}
|
|
|
|
//
|
|
// Make sure CMDCMP was raised,
|
|
//
|
|
ui32Status = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
|
|
AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
|
|
AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
|
|
|
|
//
|
|
// Re-enable IOM interrupts. Make sure CMDCMP is cleared
|
|
//
|
|
AM_REGn(IOMSTR, ui32Module, INTCLR) = (ui32IntConfig | AM_REG_IOMSTR_INTSTAT_CMDCMP_M);
|
|
AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
|
|
|
|
am_hal_debug_assert_msg(ui32Status == 1, "IOM CMDCMP was not seen");
|
|
|
|
//
|
|
// Return the status (0 = timeout; 1 = success)
|
|
//
|
|
return ui32Status;
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Perform a simple write to the I2C interface.
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM
|
|
//! @param ui32BusAddress - I2C bus address for this transaction.
|
|
//! @param pui32Data - Pointer to the bytes that will be sent.
|
|
//! @param ui32NumBytes - Number of bytes to send.
|
|
//! @param ui32Options - Additional options
|
|
//!
|
|
//! Performs a write to the I2C interface using the provided parameters.
|
|
//!
|
|
//! See the "Command Options" section for parameters that may be ORed together
|
|
//! and used in the \b ui32Options parameter.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_i2c_write(uint32_t ui32Module, uint32_t ui32BusAddress,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
//
|
|
// Redirect to the bit-bang interface if the module number matches the
|
|
// software I2C module.
|
|
//
|
|
if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
|
|
{
|
|
if ( ui32Options & AM_HAL_IOM_RAW )
|
|
{
|
|
am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
|
|
(uint8_t *)pui32Data, 0, false,
|
|
(ui32Options & AM_HAL_IOM_NO_STOP));
|
|
}
|
|
else
|
|
{
|
|
am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
|
|
(uint8_t *)pui32Data,
|
|
((ui32Options & 0xFF00) >> 8),
|
|
true,
|
|
(ui32Options & AM_HAL_IOM_NO_STOP));
|
|
}
|
|
|
|
//
|
|
// Return.
|
|
//
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Make sure the transfer isn't too long for the hardware to support.
|
|
//
|
|
am_hal_debug_assert_msg(ui32NumBytes < 256, "I2C transfer too big.");
|
|
|
|
//
|
|
// Check to see if queues have been enabled. If they are, we'll actually
|
|
// switch to the queued interface.
|
|
//
|
|
if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
|
|
{
|
|
//
|
|
// If the queue is on, go ahead and add this transaction to the queue.
|
|
//
|
|
am_hal_iom_queue_i2c_write(ui32Module, ui32BusAddress, pui32Data,
|
|
ui32NumBytes, ui32Options, 0);
|
|
|
|
//
|
|
// Wait until the transaction actually clears.
|
|
//
|
|
am_hal_iom_queue_flush(ui32Module);
|
|
|
|
//
|
|
// At this point, we've completed the transaction, and we can return.
|
|
//
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// Otherwise, we'll just do a polled transaction.
|
|
//
|
|
am_hal_iom_i2c_write_nq(ui32Module, ui32BusAddress, pui32Data,
|
|
ui32NumBytes, ui32Options);
|
|
}
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Perform simple I2C read operations.
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM
|
|
//! @param ui32BusAddress - I2C bus address for this transaction.
|
|
//! @param pui32Data - Pointer to the array where received bytes should go.
|
|
//! @param ui32NumBytes - Number of bytes to read.
|
|
//! @param ui32Options - Additional I2C transfer options.
|
|
//!
|
|
//! This function performs simple I2C read operations. The caller is
|
|
//! responsible for ensuring that the receive buffer is large enough to hold
|
|
//! the requested amount of data. If \e bPolled is true, this function will
|
|
//! block until all of the requested data has been received and placed in the
|
|
//! user-supplied buffer. Otherwise, the function will execute the I2C read
|
|
//! command and return immediately. The user-supplied buffer will be filled
|
|
//! with the received I2C data as it comes in over the physical interface, and
|
|
//! the "command complete" interrupt bit will become active once the entire
|
|
//! message is available.
|
|
//!
|
|
//! See the "Command Options" section for parameters that may be ORed together
|
|
//! and used in the \b ui32Options parameter.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This function will pack the individual bytes from the physical interface
|
|
//! into 32-bit words, which are then placed into the \e pui32Data array. Only
|
|
//! the first \e ui32NumBytes bytes in this array will contain valid data.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_i2c_read(uint32_t ui32Module, uint32_t ui32BusAddress,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
//
|
|
// Redirect to the bit-bang interface if the module number matches the
|
|
// software I2C module.
|
|
//
|
|
if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
|
|
{
|
|
if ( ui32Options & AM_HAL_IOM_RAW )
|
|
{
|
|
am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
|
|
(uint8_t *)pui32Data, 0, false,
|
|
(ui32Options & AM_HAL_IOM_NO_STOP));
|
|
}
|
|
else
|
|
{
|
|
am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
|
|
(uint8_t *)pui32Data,
|
|
((ui32Options & 0xFF00) >> 8),
|
|
true,
|
|
(ui32Options & AM_HAL_IOM_NO_STOP));
|
|
}
|
|
|
|
//
|
|
// Return.
|
|
//
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Make sure the transfer isn't too long for the hardware to support.
|
|
//
|
|
am_hal_debug_assert_msg(ui32NumBytes < 256, "I2C transfer too big.");
|
|
|
|
//
|
|
// Check to see if queues have been enabled. If they are, we'll actually
|
|
// switch to the queued interface.
|
|
//
|
|
if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
|
|
{
|
|
//
|
|
// If the queue is on, go ahead and add this transaction to the queue.
|
|
//
|
|
am_hal_iom_queue_i2c_read(ui32Module, ui32BusAddress, pui32Data,
|
|
ui32NumBytes, ui32Options, 0);
|
|
|
|
//
|
|
// Wait until the transaction actually clears.
|
|
//
|
|
am_hal_iom_queue_flush(ui32Module);
|
|
|
|
//
|
|
// At this point, we've completed the transaction, and we can return.
|
|
//
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// Otherwise, just perform a polled transaction.
|
|
//
|
|
am_hal_iom_i2c_read_nq(ui32Module, ui32BusAddress, pui32Data,
|
|
ui32NumBytes, ui32Options);
|
|
}
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Perform a non-blocking write to the I2C interface.
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM.
|
|
//! @param ui32BusAddress - I2C address of the target device.
|
|
//! @param pui32Data - Pointer to the bytes that will be sent.
|
|
//! @param ui32NumBytes - Number of bytes to send.
|
|
//! @param ui32Options - Additional I2C transfer options.
|
|
//! @param pfnCallback - Function to call when the transaction completes.
|
|
//!
|
|
//! This function performs I2C writes to a selected I2C device.
|
|
//!
|
|
//! This function call is a non-blocking implementation. It will write as much
|
|
//! data to the FIFO as possible immediately, store a pointer to the remaining
|
|
//! data, start the transfer on the bus, and then immediately return. The
|
|
//! caller will need to make sure that \e am_hal_iom_int_service() is called
|
|
//! for IOM FIFO interrupt events and "command complete" interrupt events. The
|
|
//! \e am_hal_iom_int_service() function will refill the FIFO as necessary and
|
|
//! call the \e pfnCallback function when the transaction is finished.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This means that you will need to byte-pack the \e pui32Data array with the
|
|
//! data you intend to send over the interface. One easy way to do this is to
|
|
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
|
|
//! put your actual data into the array. If there are not enough bytes in your
|
|
//! desired message to completely fill the last 32-bit word, you may pad that
|
|
//! last word with bytes of any value. The IOM hardware will only read the
|
|
//! first \e ui32NumBytes in the \e pui32Data array.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_i2c_write_nb(uint32_t ui32Module, uint32_t ui32BusAddress,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options,
|
|
am_hal_iom_callback_t pfnCallback)
|
|
{
|
|
uint32_t ui32TransferSize;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
//
|
|
// Redirect to the bit-bang interface if the module number matches the
|
|
// software I2C module.
|
|
//
|
|
if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
|
|
{
|
|
if ( ui32Options & AM_HAL_IOM_RAW )
|
|
{
|
|
am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
|
|
(uint8_t *)pui32Data, 0, false,
|
|
(ui32Options & AM_HAL_IOM_NO_STOP));
|
|
}
|
|
else
|
|
{
|
|
am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
|
|
(uint8_t *)pui32Data,
|
|
((ui32Options & 0xFF00) >> 8),
|
|
true,
|
|
(ui32Options & AM_HAL_IOM_NO_STOP));
|
|
}
|
|
|
|
//
|
|
// The I2C bit-bang interface is actually a blocking transfer, and it
|
|
// doesn't trigger the interrupt handler, so we have to call the
|
|
// callback function manually.
|
|
//
|
|
if ( pfnCallback )
|
|
{
|
|
pfnCallback();
|
|
}
|
|
//
|
|
// Return.
|
|
//
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Make sure the transfer isn't too long for the hardware to support.
|
|
//
|
|
am_hal_debug_assert_msg(ui32NumBytes < 256, "I2C transfer too big.");
|
|
|
|
|
|
//
|
|
// Figure out how many bytes we can write to the FIFO immediately.
|
|
//
|
|
ui32TransferSize = (ui32NumBytes <= AM_HAL_IOM_MAX_FIFO_SIZE ? ui32NumBytes :
|
|
AM_HAL_IOM_MAX_FIFO_SIZE);
|
|
|
|
//
|
|
// Wait until any earlier transactions have completed, and then write our
|
|
// first word to the fifo.
|
|
//
|
|
am_hal_iom_poll_complete(ui32Module);
|
|
|
|
// Need to mark IOM busy to avoid another transaction to be scheduled.
|
|
// This is to take care of a race condition in Queue mode, where the IDLE
|
|
// set is not a guarantee that the CMDCMP has been received
|
|
g_bIomBusy[ui32Module] = true;
|
|
|
|
//
|
|
// Clear CMDCMP status
|
|
//
|
|
AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
|
|
|
|
if ( am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize) > 0 )
|
|
{
|
|
//
|
|
// Prepare the global IOM buffer structure.
|
|
//
|
|
g_psIOMBuffers[ui32Module].ui32State = BUFFER_SENDING;
|
|
g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
|
|
g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
|
|
g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
|
|
|
|
//
|
|
// Update the pointer and the byte counter based on the portion of the
|
|
// transfer we just sent to the fifo.
|
|
//
|
|
g_psIOMBuffers[ui32Module].ui32BytesLeft -= ui32TransferSize;
|
|
g_psIOMBuffers[ui32Module].pui32Data += (ui32TransferSize / 4);
|
|
|
|
//
|
|
// Start the write on the bus.
|
|
//
|
|
am_hal_iom_i2c_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32BusAddress,
|
|
ui32NumBytes, ui32Options);
|
|
}
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Perform a non-blocking I2C read.
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM.
|
|
//! @param ui32ChipSelect - I2C address of the target device.
|
|
//! @param pui32Data - Pointer to the array where received bytes should go.
|
|
//! @param ui32NumBytes - Number of bytes to read.
|
|
//! @param ui32Options - Additional I2C transfer options.
|
|
//! @param pfnCallback - Function to call when the transaction completes.
|
|
//!
|
|
//! This function performs an I2C read to a selected I2C device.
|
|
//!
|
|
//! This function call is a non-blocking implementation. It will start the I2C
|
|
//! transaction on the bus and store a pointer for the destination for the read
|
|
//! data, but it will not wait for the I2C transaction to finish. The caller
|
|
//! will need to make sure that \e am_hal_iom_int_service() is called for IOM
|
|
//! FIFO interrupt events and "command complete" interrupt events. The \e
|
|
//! am_hal_iom_int_service() function will empty the FIFO as necessary,
|
|
//! transfer the data to the \e pui32Data buffer, and call the \e pfnCallback
|
|
//! function when the transaction is finished.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This function will pack the individual bytes from the physical interface
|
|
//! into 32-bit words, which are then placed into the \e pui32Data array. Only
|
|
//! the first \e ui32NumBytes bytes in this array will contain valid data.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_i2c_read_nb(uint32_t ui32Module, uint32_t ui32BusAddress,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options,
|
|
am_hal_iom_callback_t pfnCallback)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
//
|
|
// Redirect to the bit-bang interface if the module number matches the
|
|
// software I2C module.
|
|
//
|
|
if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
|
|
{
|
|
if ( ui32Options & AM_HAL_IOM_RAW )
|
|
{
|
|
am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
|
|
(uint8_t *)pui32Data, 0, false,
|
|
(ui32Options & AM_HAL_IOM_NO_STOP));
|
|
}
|
|
else
|
|
{
|
|
am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
|
|
(uint8_t *)pui32Data,
|
|
((ui32Options & 0xFF00) >> 8),
|
|
true,
|
|
(ui32Options & AM_HAL_IOM_NO_STOP));
|
|
}
|
|
|
|
//
|
|
// The I2C bit-bang interface is actually a blocking transfer, and it
|
|
// doesn't trigger the interrupt handler, so we have to call the
|
|
// callback function manually.
|
|
//
|
|
if ( pfnCallback )
|
|
{
|
|
pfnCallback();
|
|
}
|
|
|
|
//
|
|
// Return.
|
|
//
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Make sure the transfer isn't too long for the hardware to support.
|
|
//
|
|
am_hal_debug_assert_msg(ui32NumBytes < 256, "I2C transfer too big.");
|
|
|
|
//
|
|
// Wait until the bus is idle
|
|
//
|
|
am_hal_iom_poll_complete(ui32Module);
|
|
|
|
//
|
|
// Need to mark IOM busy to avoid another transaction to be scheduled.
|
|
// This is to take care of a race condition in Queue mode, where the IDLE
|
|
// set is not a guarantee that the CMDCMP has been received
|
|
//
|
|
g_bIomBusy[ui32Module] = true;
|
|
|
|
//
|
|
// Clear CMDCMP status
|
|
//
|
|
AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
|
|
|
|
//
|
|
// Prepare the global IOM buffer structure.
|
|
//
|
|
g_psIOMBuffers[ui32Module].ui32State = BUFFER_RECEIVING;
|
|
g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
|
|
g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
|
|
g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
|
|
|
|
//
|
|
// Start the read transaction on the bus.
|
|
//
|
|
am_hal_iom_i2c_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32BusAddress,
|
|
ui32NumBytes, ui32Options);
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Runs a I2C "command" through the IO master.
|
|
//!
|
|
//! @param ui32Operation - I2C action to be performed. This should either be
|
|
//! AM_HAL_IOM_WRITE or AM_HAL_IOM_READ.
|
|
//! @param ui32Module - Module number for the IOM.
|
|
//! @param ui32BusAddress - I2C address of the target device.
|
|
//! @param ui32NumBytes - Number of bytes to move (transmit or receive) with
|
|
//! this command.
|
|
//! @param ui32Options - Additional I2C options to apply to this command.
|
|
//!
|
|
//! This function may be used along with am_hal_iom_fifo_write and
|
|
//! am_hal_iom_fifo_read to perform more complex I2C reads and writes.
|
|
//! This function has additional logic to make sure SCL is high before a new
|
|
//! transaction is initiated.
|
|
//!
|
|
//! @return 0 on success
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_i2c_cmd_run(uint32_t ui32Operation, uint32_t ui32Module,
|
|
uint32_t ui32BusAddress, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options)
|
|
{
|
|
uint32_t ui32Command;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
//
|
|
// Start building the command from the operation parameter.
|
|
//
|
|
ui32Command = ui32Operation;
|
|
|
|
//
|
|
// Set the transfer length.
|
|
//
|
|
ui32Command |= (ui32NumBytes & 0xFF);
|
|
|
|
//
|
|
// Set the chip select number.
|
|
//
|
|
ui32Command |= ((ui32BusAddress << 16) & 0x03FF0000);
|
|
|
|
//
|
|
// Finally, OR in the rest of the options. This mask should make sure that
|
|
// erroneous option values won't interfere with the other transfer
|
|
// parameters.
|
|
//
|
|
ui32Command |= (ui32Options & 0x5C00FF00);
|
|
|
|
//
|
|
// Write the complete command word to the IOM command register.
|
|
//
|
|
AM_REGn(IOMSTR, ui32Module, CMD) = ui32Command;
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Sets the repeat count for the next IOM command.
|
|
//!
|
|
//! @param ui32Module is the IOM module number.
|
|
//! @param ui32CmdCount is the number of times the next command should be
|
|
//! executed.
|
|
//!
|
|
//! @note This function is not compatible with the am_hal_iom_spi_read/write()
|
|
//! or am_hal_iom_i2c_read/write() functions. Instead, you will need to use the
|
|
//! am_hal_iom_fifo_read/write() functions and the am_hal_iom_spi/i2c_cmd_run()
|
|
//! functions.
|
|
//!
|
|
//! Example usage:
|
|
//! @code
|
|
//!
|
|
//! //
|
|
//! // Create a buffer and add 3 bytes of data to it.
|
|
//! //
|
|
//! am_hal_iom_buffer(3) psBuffer;
|
|
//! psBuffer.bytes[0] = 's';
|
|
//! psBuffer.bytes[1] = 'p';
|
|
//! psBuffer.bytes[2] = 'i';
|
|
//!
|
|
//! //
|
|
//! // Send three different bytes to the same SPI register on a remote device.
|
|
//! //
|
|
//! am_hal_iom_fifo_write(ui32Module, psBuffer.words, 3);
|
|
//!
|
|
//! am_hal_command_repeat_set(ui32Module, 3);
|
|
//!
|
|
//! am_hal_iom_spi_cmd_run(AM_HAL_IOM_WRITE, psDevice, 1,
|
|
//! AM_HAL_IOM_OFFSET(0x5));
|
|
//!
|
|
//! //
|
|
//! // The sequence "0x5, 's', 0x5, 'p', 0x5, 'i'" should be written to the SPI
|
|
//! // bus.
|
|
//! //
|
|
//!
|
|
//! @endcode
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_command_repeat_set(uint32_t ui32Module, uint32_t ui32CmdCount)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
|
|
AM_REGn(IOMSTR, ui32Module, CMDRPT) = ui32CmdCount;
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Writes data to the IOM FIFO.
|
|
//!
|
|
//! @param ui32Module - Selects the IOM module to use (zero or one).
|
|
//! @param pui32Data - Pointer to an array of the data to be written.
|
|
//! @param ui32NumBytes - Number of BYTES to copy into the FIFO.
|
|
//!
|
|
//! This function copies data from the array \e pui32Data into the IOM FIFO.
|
|
//! This prepares the data to eventually be sent as SPI or I2C data by an IOM
|
|
//! "command".
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This means that you will need to byte-pack the \e pui32Data array with the
|
|
//! data you intend to send over the interface. One easy way to do this is to
|
|
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
|
|
//! put your actual data into the array. If there are not enough bytes in your
|
|
//! desired message to completely fill the last 32-bit word, you may pad that
|
|
//! last word with bytes of any value. The IOM hardware will only read the
|
|
//! first \e ui32NumBytes in the \e pui8Data array.
|
|
//!
|
|
//! @note This function may be used to write partial or complete SPI or I2C
|
|
//! messages into the IOM FIFO. When writing partial messages to the FIFO, make
|
|
//! sure that the number of bytes written is a multiple of four. Only the last
|
|
//! 'part' of a message may consist of a number of bytes that is not a multiple
|
|
//! of four. If this rule is not followed, the IOM will not be able to send
|
|
//! these bytes correctly.
|
|
//!
|
|
//! @return Number of bytes actually written to the FIFO.
|
|
//
|
|
//*****************************************************************************
|
|
uint32_t
|
|
am_hal_iom_fifo_write(uint32_t ui32Module, uint32_t *pui32Data,
|
|
uint32_t ui32NumBytes)
|
|
{
|
|
uint32_t ui32Index;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
//
|
|
// Make sure we check the number of bytes we're writing to the FIFO.
|
|
//
|
|
am_hal_debug_assert_msg((am_hal_iom_fifo_empty_slots(ui32Module) >= ui32NumBytes),
|
|
"The fifo couldn't fit the requested number of bytes");
|
|
|
|
//
|
|
// Loop over the words in the array until we have the correct number of
|
|
// bytes.
|
|
//
|
|
for ( ui32Index = 0; (4 * ui32Index) < ui32NumBytes; ui32Index++ )
|
|
{
|
|
//
|
|
// Write the word to the FIFO.
|
|
//
|
|
AM_REGn(IOMSTR, ui32Module, FIFO) = pui32Data[ui32Index];
|
|
}
|
|
|
|
return ui32NumBytes;
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Reads data from the IOM FIFO.
|
|
//!
|
|
//! @param ui32Module - Selects the IOM module to use (zero or one).
|
|
//! @param pui32Data - Pointer to an array where the FIFO data will be copied.
|
|
//! @param ui32NumBytes - Number of bytes to copy into array.
|
|
//!
|
|
//! This function copies data from the IOM FIFO into the array \e pui32Data.
|
|
//! This is how input data from SPI or I2C transactions may be retrieved.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This function will pack the individual bytes from the physical interface
|
|
//! into 32-bit words, which are then placed into the \e pui32Data array. Only
|
|
//! the first \e ui32NumBytes bytes in this array will contain valid data.
|
|
//!
|
|
//! @return Number of bytes read from the fifo.
|
|
//
|
|
//*****************************************************************************
|
|
uint32_t
|
|
am_hal_iom_fifo_read(uint32_t ui32Module, uint32_t *pui32Data,
|
|
uint32_t ui32NumBytes)
|
|
{
|
|
am_hal_iom_buffer(4) sTempBuffer;
|
|
uint32_t i, j, ui32NumWords, ui32Leftovers;
|
|
uint8_t *pui8Data;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
//
|
|
// Make sure we check the number of bytes we're reading from the FIFO.
|
|
//
|
|
am_hal_debug_assert_msg((am_hal_iom_fifo_full_slots(ui32Module) >= ui32NumBytes),
|
|
"The fifo doesn't contain the requested number of bytes.");
|
|
|
|
//
|
|
// Figure out how many whole words we're reading from the fifo, and how
|
|
// many bytes will be left over when we're done.
|
|
//
|
|
ui32NumWords = ui32NumBytes / 4;
|
|
ui32Leftovers = ui32NumBytes - (ui32NumWords * 4);
|
|
|
|
//
|
|
// Copy out as many full words as we can.
|
|
//
|
|
for ( i = 0; i < ui32NumWords; i++ )
|
|
{
|
|
//
|
|
// Copy data out of the FIFO, one word at a time.
|
|
//
|
|
pui32Data[i] = AM_REGn(IOMSTR, ui32Module, FIFO);
|
|
}
|
|
|
|
//
|
|
// If there were leftovers, we'll copy them carefully. Pull the last word
|
|
// from the fifo (there should only be one) into a temporary buffer. Also,
|
|
// create an 8-bit pointer to help us copy the remaining bytes one at a
|
|
// time.
|
|
//
|
|
// Note: If the data buffer we were given was truly a word pointer like the
|
|
// definition requests, we wouldn't need to do this. It's possible to call
|
|
// this function with a re-cast or packed pointer instead though. If that
|
|
// happens, we want to be careful not to overwrite any data that might be
|
|
// sitting just past the end of the destination array.
|
|
//
|
|
if ( ui32Leftovers )
|
|
{
|
|
sTempBuffer.words[0] = AM_REGn(IOMSTR, ui32Module, FIFO);
|
|
pui8Data = (uint8_t *) (&pui32Data[i]);
|
|
|
|
//
|
|
// If we had leftover bytes, copy them out one byte at a time.
|
|
//
|
|
for ( j = 0; j < ui32Leftovers; j++ )
|
|
{
|
|
pui8Data[j] = sTempBuffer.bytes[j];
|
|
}
|
|
}
|
|
|
|
return ui32NumBytes;
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Check amount of empty space in the IOM fifo.
|
|
//!
|
|
//! @param ui32Module - Module number of the IOM whose fifo should be checked.
|
|
//!
|
|
//! Returns the number of bytes that could be written to the IOM fifo without
|
|
//! causing an overflow.
|
|
//!
|
|
//! @return Amount of space available in the fifo (in bytes).
|
|
//
|
|
//*****************************************************************************
|
|
uint8_t
|
|
am_hal_iom_fifo_empty_slots(uint32_t ui32Module)
|
|
{
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
//
|
|
// Calculate the FIFO Remaining from the FIFO size. This will be different
|
|
// depending on whether the IOM is configured for half-duplex or
|
|
// full-duplex.
|
|
//
|
|
return (AM_HAL_IOM_MAX_FIFO_SIZE - AM_BFRn(IOMSTR, ui32Module, FIFOPTR, FIFOSIZ)) & (~0x3);
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Check to see how much data is in the IOM fifo.
|
|
//!
|
|
//! @param ui32Module - Module number of the IOM whose fifo should be checked.
|
|
//!
|
|
//! Returns the number of bytes of data that are currently in the IOM fifo.
|
|
//!
|
|
//! @return Number of bytes in the fifo.
|
|
//
|
|
//*****************************************************************************
|
|
uint8_t
|
|
am_hal_iom_fifo_full_slots(uint32_t ui32Module)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
return AM_BFRn(IOMSTR, ui32Module, FIFOPTR, FIFOSIZ);
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Wait for the current IOM command to complete.
|
|
//!
|
|
//! @param ui32Module - The module number of the IOM to use.
|
|
//!
|
|
//! This function polls until the IOM bus becomes idle.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_poll_complete(uint32_t ui32Module)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Poll on the IDLE bit in the status register.
|
|
//
|
|
while ( g_bIomBusy[ui32Module] );
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Returns the contents of the IOM status register.
|
|
//!
|
|
//! @param ui32Module IOM instance to check the status of.
|
|
//!
|
|
//! This function is just a wrapper around the IOM status register.
|
|
//!
|
|
//! @return 32-bit contents of IOM status register.
|
|
//
|
|
//*****************************************************************************
|
|
uint32_t
|
|
am_hal_iom_status_get(uint32_t ui32Module)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
return AM_REGn(IOMSTR, ui32Module, STATUS);
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Returns current error state of the IOM.
|
|
//!
|
|
//! @param ui32Module IOM instance to check the status of.
|
|
//!
|
|
//! This function returns status indicating whether the IOM has incurred any
|
|
//! errors or not.
|
|
//!
|
|
//! @return 0 if all is well.
|
|
//! Otherwise error status as a bitmask of:
|
|
//! AM_HAL_IOM_ERR_INVALID_MODULE
|
|
//! AM_HAL_IOM_INT_ARB Another master initiated an operation
|
|
//! simultaenously and the IOM lost. Or
|
|
//! the IOM started an operation but found
|
|
//! SDA already low.
|
|
//! AM_HAL_IOM_INT_START A START from another master detected.
|
|
//! SW must wait for STOP before continuing.
|
|
//! AM_HAL_IOM_INT_ICMD Attempt to issue a CMD while another
|
|
//! CMD was already in progress, or issue a
|
|
//! non-zero-len write CMD with empty FIFO.
|
|
//! AM_HAL_IOM_INT_IACC Attempt to read the FIFO on a write. Or
|
|
//! an attempt to write the FIFO on a read.
|
|
//! AM_HAL_IOM_INT_NAK Expected ACK from slave not received.
|
|
//! AM_HAL_IOM_INT_FOVFL Attempt to write the FIFO while full
|
|
//! (FIFOSIZ > 124).
|
|
//! AM_HAL_IOM_INT_FUNDFL Attempt to read FIFO when empty (that is
|
|
//! FIFOSIZ < 4).
|
|
//! Note - see the datasheet text for full explanations of the INT errs.
|
|
//
|
|
//*****************************************************************************
|
|
uint32_t
|
|
am_hal_iom_error_status_get(uint32_t ui32Module)
|
|
{
|
|
uint32_t ui32intstat = 0;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
//
|
|
// AM_HAL_IOM_ERR_INVALID_MODULE is defined as an unused interrupt bit.
|
|
//
|
|
return AM_HAL_IOM_ERR_INVALID_MODULE;
|
|
}
|
|
|
|
if ( AM_REGn(IOMSTR, ui32Module, STATUS) & AM_REG_IOMSTR_STATUS_ERR_ERROR )
|
|
{
|
|
//
|
|
// The IOM is currently indicating an error condition.
|
|
// Let's figure out what is going on.
|
|
//
|
|
ui32intstat = AM_REGn(IOMSTR, ui32Module, INTSTAT);
|
|
|
|
//
|
|
// Filter out non-error bits.
|
|
//
|
|
ui32intstat &= AM_REG_IOMSTR_INTSTAT_ARB_M |
|
|
AM_REG_IOMSTR_INTSTAT_START_M |
|
|
AM_REG_IOMSTR_INTSTAT_ICMD_M |
|
|
AM_REG_IOMSTR_INTSTAT_IACC_M |
|
|
AM_REG_IOMSTR_INTSTAT_NAK_M |
|
|
AM_REG_IOMSTR_INTSTAT_FOVFL_M |
|
|
AM_REG_IOMSTR_INTSTAT_FUNDFL_M;
|
|
}
|
|
|
|
return ui32intstat;
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Service interrupts from the IOM.
|
|
//!
|
|
//! @param ui32Status is the IOM interrupt status as returned from
|
|
//! am_hal_iom_int_status_get()
|
|
//!
|
|
//! This function performs the necessary operations to facilitate non-blocking
|
|
//! IOM writes and reads.
|
|
//!
|
|
//! @return None.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_int_service(uint32_t ui32Module, uint32_t ui32Status)
|
|
{
|
|
am_hal_iom_nb_buffer *psBuffer;
|
|
uint32_t ui32NumBytes;
|
|
uint32_t ui32SpaceInFifo;
|
|
uint32_t thresh;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
//
|
|
// Find the buffer information for the chosen IOM module.
|
|
//
|
|
psBuffer = &g_psIOMBuffers[ui32Module];
|
|
|
|
//
|
|
// Figure out what type of interrupt this was.
|
|
//
|
|
if ( ui32Status & AM_HAL_IOM_INT_CMDCMP )
|
|
{
|
|
//
|
|
// Need to mark IOM Free
|
|
//
|
|
g_bIomBusy[ui32Module] = false;
|
|
|
|
//
|
|
// If we're not in the middle of a non-blocking call right now, there's
|
|
// nothing for this routine to do.
|
|
//
|
|
if ( psBuffer->ui32State == BUFFER_IDLE )
|
|
{
|
|
return;
|
|
}
|
|
|
|
//
|
|
// If a command just completed, we need to transfer all available data.
|
|
//
|
|
if ( psBuffer->ui32State == BUFFER_RECEIVING )
|
|
{
|
|
//
|
|
// If we were receiving, we need to copy any remaining data out of
|
|
// the IOM FIFO before calling the callback.
|
|
//
|
|
ui32NumBytes = am_hal_iom_fifo_full_slots(ui32Module);
|
|
am_hal_iom_fifo_read(ui32Module, psBuffer->pui32Data, ui32NumBytes);
|
|
}
|
|
|
|
//
|
|
// A command complete event also means that we've already transferred
|
|
// all of the data we need, so we can mark the data buffer as IDLE.
|
|
//
|
|
psBuffer->ui32State = BUFFER_IDLE;
|
|
|
|
//
|
|
// If we have a callback, call it now.
|
|
//
|
|
if ( psBuffer->pfnCallback )
|
|
{
|
|
psBuffer->pfnCallback();
|
|
}
|
|
}
|
|
else if ( ui32Status & AM_HAL_IOM_INT_THR )
|
|
{
|
|
//
|
|
// If we're not in the middle of a non-blocking call right now, there's
|
|
// nothing for this routine to do.
|
|
//
|
|
if ( psBuffer->ui32State == BUFFER_IDLE )
|
|
{
|
|
return;
|
|
}
|
|
//
|
|
// If we received a threshold event in the middle of a command, we need
|
|
// to transfer data.
|
|
//
|
|
if ( psBuffer->ui32State == BUFFER_SENDING )
|
|
{
|
|
thresh = AM_BFRn(IOMSTR, ui32Module, FIFOTHR, FIFOWTHR);
|
|
do
|
|
{
|
|
ui32SpaceInFifo = am_hal_iom_fifo_empty_slots(ui32Module);
|
|
|
|
//
|
|
// Figure out how much data we can send.
|
|
//
|
|
if ( psBuffer->ui32BytesLeft <= ui32SpaceInFifo )
|
|
{
|
|
//
|
|
// If the whole transfer will fit in the fifo, send it all.
|
|
//
|
|
ui32NumBytes = psBuffer->ui32BytesLeft;
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// If the transfer won't fit in the fifo completely, send as
|
|
// much as we can (rounded down to a multiple of four bytes).
|
|
//
|
|
ui32NumBytes = ui32SpaceInFifo;
|
|
}
|
|
|
|
//
|
|
// Perform the transfer.
|
|
//
|
|
am_hal_iom_fifo_write(ui32Module, psBuffer->pui32Data, ui32NumBytes);
|
|
|
|
// Clear any spurious THR interrupt that might have got raised
|
|
// while we were adding data to FIFO
|
|
AM_BFWn(IOMSTR, ui32Module, INTCLR, THR, 1);
|
|
//
|
|
// Update the pointer and the byte counter.
|
|
//
|
|
psBuffer->ui32BytesLeft -= ui32NumBytes;
|
|
psBuffer->pui32Data += (ui32NumBytes / 4);
|
|
|
|
if ( 0 == psBuffer->ui32BytesLeft )
|
|
{
|
|
//
|
|
// Done with this transaction
|
|
//
|
|
break;
|
|
}
|
|
} while ( am_hal_iom_fifo_full_slots(ui32Module) <= thresh );
|
|
}
|
|
else
|
|
{
|
|
thresh = AM_BFRn(IOMSTR, ui32Module, FIFOTHR, FIFORTHR);
|
|
while ( (ui32NumBytes = am_hal_iom_fifo_full_slots(ui32Module)) >= thresh )
|
|
{
|
|
//
|
|
// If we get here, we're in the middle of a read. Transfer as much
|
|
// data as possible out of the FIFO and into our buffer.
|
|
//
|
|
if ( ui32NumBytes == psBuffer->ui32BytesLeft )
|
|
{
|
|
//
|
|
// If the fifo contains our entire message, just copy the whole
|
|
// thing out.
|
|
//
|
|
am_hal_iom_fifo_read(ui32Module, psBuffer->pui32Data,
|
|
psBuffer->ui32BytesLeft);
|
|
|
|
break;
|
|
}
|
|
else if ( ui32NumBytes >= 4 )
|
|
{
|
|
//
|
|
// If the fifo has at least one 32-bit word in it, copy out the
|
|
// biggest block we can.
|
|
//
|
|
ui32NumBytes = (ui32NumBytes & (~0x3));
|
|
|
|
am_hal_iom_fifo_read(ui32Module, psBuffer->pui32Data, ui32NumBytes);
|
|
|
|
//
|
|
// Update the pointer and the byte counter.
|
|
//
|
|
psBuffer->ui32BytesLeft -= ui32NumBytes;
|
|
psBuffer->pui32Data += (ui32NumBytes / 4);
|
|
|
|
// Clear any spurious THR interrupt that might have got raised
|
|
// while we were reading the data from FIFO
|
|
AM_BFWn(IOMSTR, ui32Module, INTCLR, THR, 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Initialize the IOM queue system.
|
|
//!
|
|
//! @param ui32Module - IOM module to be initialized for queue transfers.
|
|
//! @param psQueueMemory - Memory to be used for queueing IOM transfers.
|
|
//! @param ui32QueueMemSize - Size of the queue memory.
|
|
//!
|
|
//! This function prepares the selected IOM interface for use with the IOM
|
|
//! queue system. The IOM queue system allows the caller to start multiple IOM
|
|
//! transfers in a non-blocking way. In order to do this, the HAL requires some
|
|
//! amount of memory dedicated to keeping track of IOM transactions before they
|
|
//! can be sent to the hardware registers. This function tells the HAL what
|
|
//! memory it should use for this purpose. For more information on the IOM
|
|
//! queue interface, please see the documentation for
|
|
//! am_hal_iom_queue_spi_write().
|
|
//!
|
|
//! @note This function only needs to be called once (per module), but it must
|
|
//! be called before any other am_hal_iom_queue function.
|
|
//!
|
|
//! @note Each IOM module will need its own working space. If you intend to use
|
|
//! the queueing mechanism with more than one IOM module, you will need to
|
|
//! provide separate queue memory for each module.
|
|
//!
|
|
//! Example usage:
|
|
//!
|
|
//! @code
|
|
//!
|
|
//! //
|
|
//! // Declare an array to be used for IOM queue transactions. This array will
|
|
//! // be big enough to handle 32 IOM transactions.
|
|
//! //
|
|
//! am_hal_iom_queue_entry_t g_psQueueMemory[32];
|
|
//!
|
|
//! //
|
|
//! // Attach the IOM0 queue system to the memory we just allocated.
|
|
//! //
|
|
//! am_hal_iom_queue_init(0, g_psQueueMemory, sizeof(g_psQueueMemory));
|
|
//!
|
|
//! @endcode
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_queue_init(uint32_t ui32Module, am_hal_iom_queue_entry_t *psQueueMemory,
|
|
uint32_t ui32QueueMemSize)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
|
|
am_hal_queue_init(&g_psIOMQueue[ui32Module], psQueueMemory,
|
|
sizeof(am_hal_iom_queue_entry_t), ui32QueueMemSize);
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Check to see how many transactions are in the queue.
|
|
//!
|
|
//! @param ui32Module Module number for the queue to check
|
|
//!
|
|
//! This function will check to see how many transactions are in the IOM queue
|
|
//! for the selected IOM module.
|
|
//!
|
|
//! @return Number of transactions in the queue.
|
|
//
|
|
//*****************************************************************************
|
|
uint32_t
|
|
am_hal_iom_queue_length_get(uint32_t ui32Module)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
return am_hal_queue_data_left(&g_psIOMQueue[ui32Module]);
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Executes the next operation in the IOM queue.
|
|
//!
|
|
//! @param ui32ModuleNum - Module number for the IOM to use.
|
|
//!
|
|
//! This function checks the IOM queue to see if there are any remaining
|
|
//! transactions. If so, it will start the next available transaction in a
|
|
//! non-blocking way.
|
|
//!
|
|
//! @note This function is called automatically by am_hal_iom_queue_service().
|
|
//! You should not call this function standalone in a normal application.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_queue_start_next_msg(uint32_t ui32Module)
|
|
{
|
|
am_hal_iom_queue_entry_t sIOMTransaction = {0};
|
|
|
|
uint32_t ui32ChipSelect;
|
|
uint32_t *pui32Data;
|
|
uint32_t ui32NumBytes;
|
|
uint32_t ui32Options;
|
|
am_hal_iom_callback_t pfnCallback;
|
|
|
|
uint32_t ui32Critical;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Start a critical section.
|
|
//
|
|
ui32Critical = am_hal_interrupt_master_disable();
|
|
|
|
//
|
|
// Try to get the next IOM operation from the queue.
|
|
//
|
|
if ( am_hal_queue_item_get(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) )
|
|
{
|
|
//
|
|
// Read the operation parameters
|
|
//
|
|
ui32ChipSelect = sIOMTransaction.ui32ChipSelect;
|
|
pui32Data = sIOMTransaction.pui32Data;
|
|
ui32NumBytes = sIOMTransaction.ui32NumBytes;
|
|
ui32Options = sIOMTransaction.ui32Options;
|
|
pfnCallback = sIOMTransaction.pfnCallback;
|
|
|
|
//
|
|
// Figure out if this was a SPI or I2C write or read, and call the
|
|
// appropriate non-blocking function.
|
|
//
|
|
switch ( sIOMTransaction.ui32Operation )
|
|
{
|
|
case AM_HAL_IOM_QUEUE_SPI_WRITE:
|
|
am_hal_iom_spi_write_nb(ui32Module, ui32ChipSelect, pui32Data,
|
|
ui32NumBytes, ui32Options, pfnCallback);
|
|
break;
|
|
|
|
case AM_HAL_IOM_QUEUE_SPI_READ:
|
|
am_hal_iom_spi_read_nb(ui32Module, ui32ChipSelect, pui32Data,
|
|
ui32NumBytes, ui32Options, pfnCallback);
|
|
break;
|
|
|
|
case AM_HAL_IOM_QUEUE_I2C_WRITE:
|
|
am_hal_iom_i2c_write_nb(ui32Module, ui32ChipSelect, pui32Data,
|
|
ui32NumBytes, ui32Options, pfnCallback);
|
|
break;
|
|
|
|
case AM_HAL_IOM_QUEUE_I2C_READ:
|
|
am_hal_iom_i2c_read_nb(ui32Module, ui32ChipSelect, pui32Data,
|
|
ui32NumBytes, ui32Options, pfnCallback);
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Exit the critical section.
|
|
//
|
|
am_hal_interrupt_master_set(ui32Critical);
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Send a SPI frame using the IOM queue.
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM
|
|
//! @param ui32ChipSelect - Chip-select number for this transaction.
|
|
//! @param pui32Data - Pointer to the bytes that will be sent.
|
|
//! @param ui32NumBytes - Number of bytes to send.
|
|
//! @param ui32Options - Additional SPI transfer options.
|
|
//!
|
|
//! This function performs SPI writes to a selected SPI device.
|
|
//!
|
|
//! This function call is a queued implementation. It will write as much
|
|
//! data to the FIFO as possible immediately, store a pointer to the remaining
|
|
//! data, start the transfer on the bus, and then immediately return. If the
|
|
//! FIFO is already in use, this function will save its arguments to the IOM
|
|
//! queue and execute the transaction when the FIFO becomes available.
|
|
//!
|
|
//! The caller will need to make sure that \e am_hal_iom_queue_service() is
|
|
//! called for IOM FIFO interrupt events and "command complete" interrupt
|
|
//! events. The \e am_hal_iom_queue_service() function will refill the FIFO as
|
|
//! necessary and call the \e pfnCallback function when the transaction is
|
|
//! finished.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This means that you will need to byte-pack the \e pui32Data array with the
|
|
//! data you intend to send over the interface. One easy way to do this is to
|
|
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
|
|
//! put your actual data into the array. If there are not enough bytes in your
|
|
//! desired message to completely fill the last 32-bit word, you may pad that
|
|
//! last word with bytes of any value. The IOM hardware will only read the
|
|
//! first \e ui32NumBytes in the \e pui8Data array.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_queue_spi_write(uint32_t ui32Module, uint32_t ui32ChipSelect,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
|
|
{
|
|
uint32_t ui32Critical;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
//
|
|
// Start a critical section.
|
|
//
|
|
ui32Critical = am_hal_interrupt_master_disable();
|
|
|
|
//
|
|
// Check to see if we need to use the queue. If the IOM is idle, and
|
|
// there's nothing in the queue already, we can go ahead and start the
|
|
// transaction in the physical IOM. Need to check for the g_bIomBusy to
|
|
// avoid a race condition where IDLE is set - but the command complete
|
|
// for previous transaction has not been processed yet
|
|
//
|
|
if ( (g_bIomBusy[ui32Module] == false) &&
|
|
am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
|
|
{
|
|
//
|
|
// Send the packet.
|
|
//
|
|
am_hal_iom_spi_write_nb(ui32Module, ui32ChipSelect, pui32Data,
|
|
ui32NumBytes, ui32Options, pfnCallback);
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// Otherwise, we'll build a transaction structure and add it to the queue.
|
|
//
|
|
am_hal_iom_queue_entry_t sIOMTransaction;
|
|
|
|
sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_SPI_WRITE;
|
|
sIOMTransaction.ui32Module = ui32Module;
|
|
sIOMTransaction.ui32ChipSelect = ui32ChipSelect;
|
|
sIOMTransaction.pui32Data = pui32Data;
|
|
sIOMTransaction.ui32NumBytes = ui32NumBytes;
|
|
sIOMTransaction.ui32Options = ui32Options;
|
|
sIOMTransaction.pfnCallback = pfnCallback;
|
|
|
|
//
|
|
// Make sure the item actually makes it into the queue
|
|
//
|
|
if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
|
|
{
|
|
//
|
|
// Didn't have enough memory.
|
|
//
|
|
am_hal_debug_assert_msg(0,
|
|
"The IOM queue is full. Allocate more"
|
|
"memory to the IOM queue, or allow it more"
|
|
"time to empty between transactions.");
|
|
}
|
|
}
|
|
|
|
//
|
|
// Exit the critical section.
|
|
//
|
|
am_hal_interrupt_master_set(ui32Critical);
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Read a SPI frame using the IOM queue.
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM
|
|
//! @param ui32ChipSelect - Chip select number for this transaction.
|
|
//! @param pui32Data - Pointer to the array where received bytes should go.
|
|
//! @param ui32NumBytes - Number of bytes to read.
|
|
//! @param ui32Options - Additional SPI transfer options.
|
|
//!
|
|
//! This function performs SPI reads to a selected SPI device.
|
|
//!
|
|
//! This function call is a queued implementation. It will write as much
|
|
//! data to the FIFO as possible immediately, store a pointer to the remaining
|
|
//! data, start the transfer on the bus, and then immediately return. If the
|
|
//! FIFO is already in use, this function will save its arguments to the IOM
|
|
//! queue and execute the transaction when the FIFO becomes available.
|
|
//!
|
|
//! The caller will need to make sure that \e am_hal_iom_queue_service() is
|
|
//! called for IOM FIFO interrupt events and "command complete" interrupt
|
|
//! events. The \e am_hal_iom_queue_service() function will empty the FIFO as
|
|
//! necessary and call the \e pfnCallback function when the transaction is
|
|
//! finished.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This means that you will need to byte-pack the \e pui32Data array with the
|
|
//! data you intend to send over the interface. One easy way to do this is to
|
|
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
|
|
//! put your actual data into the array. If there are not enough bytes in your
|
|
//! desired message to completely fill the last 32-bit word, you may pad that
|
|
//! last word with bytes of any value. The IOM hardware will only read the
|
|
//! first \e ui32NumBytes in the \e pui8Data array.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_queue_spi_read(uint32_t ui32Module, uint32_t ui32ChipSelect,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
|
|
{
|
|
uint32_t ui32Critical;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
// Start a critical section.
|
|
//
|
|
ui32Critical = am_hal_interrupt_master_disable();
|
|
|
|
//
|
|
// Check to see if we need to use the queue. If the IOM is idle, and
|
|
// there's nothing in the queue already, we can go ahead and start the
|
|
// transaction in the physical IOM. Need to check for the g_bIomBusy to
|
|
// avoid a race condition where IDLE is set - but the command complete
|
|
// for previous transaction has not been processed yet
|
|
//
|
|
if ( (g_bIomBusy[ui32Module] == false) &&
|
|
am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
|
|
{
|
|
//
|
|
// Send the packet.
|
|
//
|
|
am_hal_iom_spi_read_nb(ui32Module, ui32ChipSelect, pui32Data,
|
|
ui32NumBytes, ui32Options, pfnCallback);
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// Otherwise, we'll build a transaction structure and add it to the queue.
|
|
//
|
|
am_hal_iom_queue_entry_t sIOMTransaction;
|
|
|
|
sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_SPI_READ;
|
|
sIOMTransaction.ui32Module = ui32Module;
|
|
sIOMTransaction.ui32ChipSelect = ui32ChipSelect;
|
|
sIOMTransaction.pui32Data = pui32Data;
|
|
sIOMTransaction.ui32NumBytes = ui32NumBytes;
|
|
sIOMTransaction.ui32Options = ui32Options;
|
|
sIOMTransaction.pfnCallback = pfnCallback;
|
|
|
|
//
|
|
// Make sure the item actually makes it into the queue
|
|
//
|
|
if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
|
|
{
|
|
//
|
|
// Didn't have enough memory.
|
|
//
|
|
am_hal_debug_assert_msg(0,
|
|
"The IOM queue is full. Allocate more"
|
|
"memory to the IOM queue, or allow it more"
|
|
"time to empty between transactions.");
|
|
}
|
|
}
|
|
|
|
//
|
|
// Exit the critical section.
|
|
//
|
|
am_hal_interrupt_master_set(ui32Critical);
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Send an I2C frame using the IOM queue.
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM
|
|
//! @param ui32BusAddress - I2C address of the target device.
|
|
//! @param pui32Data - Pointer to the bytes that will be sent.
|
|
//! @param ui32NumBytes - Number of bytes to send.
|
|
//! @param ui32Options - Additional I2C transfer options.
|
|
//!
|
|
//! This function performs I2C writes to a selected I2C device.
|
|
//!
|
|
//! This function call is a queued implementation. It will write as much
|
|
//! data to the FIFO as possible immediately, store a pointer to the remaining
|
|
//! data, start the transfer on the bus, and then immediately return. If the
|
|
//! FIFO is already in use, this function will save its arguments to the IOM
|
|
//! queue and execute the transaction when the FIFO becomes available.
|
|
//!
|
|
//! The caller will need to make sure that \e am_hal_iom_queue_service() is
|
|
//! called for IOM FIFO interrupt events and "command complete" interrupt
|
|
//! events. The \e am_hal_iom_queue_service() function will refill the FIFO as
|
|
//! necessary and call the \e pfnCallback function when the transaction is
|
|
//! finished.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This means that you will need to byte-pack the \e pui32Data array with the
|
|
//! data you intend to send over the interface. One easy way to do this is to
|
|
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
|
|
//! put your actual data into the array. If there are not enough bytes in your
|
|
//! desired message to completely fill the last 32-bit word, you may pad that
|
|
//! last word with bytes of any value. The IOM hardware will only read the
|
|
//! first \e ui32NumBytes in the \e pui8Data array.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_queue_i2c_write(uint32_t ui32Module, uint32_t ui32BusAddress,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
|
|
{
|
|
uint32_t ui32Critical;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
//
|
|
// Start a critical section.
|
|
//
|
|
ui32Critical = am_hal_interrupt_master_disable();
|
|
|
|
//
|
|
// Check to see if we need to use the queue. If the IOM is idle, and
|
|
// there's nothing in the queue already, we can go ahead and start the
|
|
// transaction in the physical IOM. Need to check for the g_bIomBusy to
|
|
// avoid a race condition where IDLE is set - but the command complete
|
|
// for previous transaction has not been processed yet
|
|
//
|
|
if ( (g_bIomBusy[ui32Module] == false) &&
|
|
am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
|
|
{
|
|
//
|
|
// Send the packet.
|
|
//
|
|
am_hal_iom_i2c_write_nb(ui32Module, ui32BusAddress, pui32Data,
|
|
ui32NumBytes, ui32Options, pfnCallback);
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// Otherwise, we'll build a transaction structure and add it to the queue.
|
|
//
|
|
am_hal_iom_queue_entry_t sIOMTransaction;
|
|
|
|
sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_I2C_WRITE;
|
|
sIOMTransaction.ui32Module = ui32Module;
|
|
sIOMTransaction.ui32ChipSelect = ui32BusAddress;
|
|
sIOMTransaction.pui32Data = pui32Data;
|
|
sIOMTransaction.ui32NumBytes = ui32NumBytes;
|
|
sIOMTransaction.ui32Options = ui32Options;
|
|
sIOMTransaction.pfnCallback = pfnCallback;
|
|
|
|
//
|
|
// Make sure the item actually makes it into the queue
|
|
//
|
|
if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
|
|
{
|
|
//
|
|
// Didn't have enough memory.
|
|
//
|
|
am_hal_debug_assert_msg(0,
|
|
"The IOM queue is full. Allocate more"
|
|
"memory to the IOM queue, or allow it more"
|
|
"time to empty between transactions.");
|
|
}
|
|
}
|
|
|
|
//
|
|
// Exit the critical section.
|
|
//
|
|
am_hal_interrupt_master_set(ui32Critical);
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Read a I2C frame using the IOM queue.
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM
|
|
//! @param ui32BusAddress - I2C address of the target device.
|
|
//! @param pui32Data - Pointer to the array where received bytes should go.
|
|
//! @param ui32NumBytes - Number of bytes to read.
|
|
//! @param ui32Options - Additional I2C transfer options.
|
|
//!
|
|
//! This function performs I2C reads to a selected I2C device.
|
|
//!
|
|
//! This function call is a queued implementation. It will write as much
|
|
//! data to the FIFO as possible immediately, store a pointer to the remaining
|
|
//! data, start the transfer on the bus, and then immediately return. If the
|
|
//! FIFO is already in use, this function will save its arguments to the IOM
|
|
//! queue and execute the transaction when the FIFO becomes available.
|
|
//!
|
|
//! The caller will need to make sure that \e am_hal_iom_queue_service() is
|
|
//! called for IOM FIFO interrupt events and "command complete" interrupt
|
|
//! events. The \e am_hal_iom_queue_service() function will empty the FIFO as
|
|
//! necessary and call the \e pfnCallback function when the transaction is
|
|
//! finished.
|
|
//!
|
|
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
|
|
//! This means that you will need to byte-pack the \e pui32Data array with the
|
|
//! data you intend to send over the interface. One easy way to do this is to
|
|
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
|
|
//! put your actual data into the array. If there are not enough bytes in your
|
|
//! desired message to completely fill the last 32-bit word, you may pad that
|
|
//! last word with bytes of any value. The IOM hardware will only read the
|
|
//! first \e ui32NumBytes in the \e pui8Data array.
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_queue_i2c_read(uint32_t ui32Module, uint32_t ui32BusAddress,
|
|
uint32_t *pui32Data, uint32_t ui32NumBytes,
|
|
uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
|
|
{
|
|
uint32_t ui32Critical;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
am_hal_debug_assert_msg(ui32NumBytes > 0,
|
|
"Trying to do a 0 byte transaction");
|
|
|
|
//
|
|
// Start a critical section.
|
|
//
|
|
ui32Critical = am_hal_interrupt_master_disable();
|
|
|
|
//
|
|
// Check to see if we need to use the queue. If the IOM is idle, and
|
|
// there's nothing in the queue already, we can go ahead and start the
|
|
// transaction in the physical IOM. Need to check for the g_bIomBusy to
|
|
// avoid a race condition where IDLE is set - but the command complete
|
|
// for previous transaction has not been processed yet
|
|
//
|
|
if ( (g_bIomBusy[ui32Module] == false) &&
|
|
am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
|
|
{
|
|
//
|
|
// Send the packet.
|
|
//
|
|
am_hal_iom_i2c_read_nb(ui32Module, ui32BusAddress, pui32Data,
|
|
ui32NumBytes, ui32Options, pfnCallback);
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// Otherwise, we'll build a transaction structure and add it to the queue.
|
|
//
|
|
am_hal_iom_queue_entry_t sIOMTransaction;
|
|
|
|
sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_I2C_READ;
|
|
sIOMTransaction.ui32Module = ui32Module;
|
|
sIOMTransaction.ui32ChipSelect = ui32BusAddress;
|
|
sIOMTransaction.pui32Data = pui32Data;
|
|
sIOMTransaction.ui32NumBytes = ui32NumBytes;
|
|
sIOMTransaction.ui32Options = ui32Options;
|
|
sIOMTransaction.pfnCallback = pfnCallback;
|
|
|
|
//
|
|
// Make sure the item actually makes it into the queue
|
|
//
|
|
if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
|
|
{
|
|
//
|
|
// Didn't have enough memory.
|
|
//
|
|
am_hal_debug_assert_msg(0, "The IOM queue is full. Allocate more"
|
|
"memory to the IOM queue, or allow it more"
|
|
"time to empty between transactions.");
|
|
}
|
|
}
|
|
|
|
//
|
|
// Exit the critical section.
|
|
//
|
|
am_hal_interrupt_master_set(ui32Critical);
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief "Block" until the queue of IOM transactions is over.
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM.
|
|
//!
|
|
//! This function will sleep the core block until the queue for the selected
|
|
//! IOM is empty. This is mainly useful for non-RTOS applications where the
|
|
//! caller needs to know that a certain IOM transaction is complete before
|
|
//! continuing with the main program flow.
|
|
//!
|
|
//! @note This function will put the core to sleep while it waits for the
|
|
//! queued IOM transactions to complete. This will save power, in most
|
|
//! situations, but it may not be the best option in all cases. \e Do \e not
|
|
//! call this function from interrupt context (the core may not wake up again).
|
|
//! \e Be \e careful using this function from an RTOS task (many RTOS
|
|
//! implementations use hardware interrupts to switch contexts, and most RTOS
|
|
//! implementations expect to control sleep behavior).
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_sleeping_queue_flush(uint32_t ui32Module)
|
|
{
|
|
bool bWaiting = true;
|
|
uint32_t ui32Critical;
|
|
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Loop forever waiting for the IOM to be idle and the queue to be empty.
|
|
//
|
|
while ( bWaiting )
|
|
{
|
|
//
|
|
// Start a critical section.
|
|
//
|
|
ui32Critical = am_hal_interrupt_master_disable();
|
|
|
|
//
|
|
// Check the queue and the IOM itself.
|
|
//
|
|
if ( (g_bIomBusy[ui32Module] == false) &&
|
|
am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
|
|
{
|
|
//
|
|
// If the queue is empty and the IOM is idle, we can go ahead and
|
|
// return.
|
|
//
|
|
bWaiting = false;
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// Otherwise, we should sleep until the interface is actually free.
|
|
//
|
|
am_hal_sysctrl_sleep(AM_HAL_SYSCTRL_SLEEP_NORMAL);
|
|
}
|
|
|
|
//
|
|
// End the critical section.
|
|
//
|
|
am_hal_interrupt_master_set(ui32Critical);
|
|
}
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Service IOM transaction queue.
|
|
//!
|
|
//! @param ui32Module - Module number for the IOM to be used.
|
|
//! @param ui32Status - Interrupt status bits for the IOM module being used.
|
|
//!
|
|
//! This function handles the operation of FIFOs and the IOM queue during
|
|
//! queued IOM transactions. If you are using \e am_hal_iom_queue_spi_write()
|
|
//! or similar functions, you will need to call this function in your interrupt
|
|
//! handler.
|
|
//!
|
|
//! @note This interrupt service routine relies on the user to enable the IOM
|
|
//! interrupts for FIFO threshold and CMD complete.
|
|
//!
|
|
//! Example:
|
|
//!
|
|
//! @code
|
|
//! void
|
|
//! am_iomaster0_isr(void)
|
|
//! {
|
|
//! uint32_t ui32Status;
|
|
//!
|
|
//! //
|
|
//! // Check to see which interrupt caused us to enter the ISR.
|
|
//! //
|
|
//! ui32Status = am_hal_iom_int_status(0, true);
|
|
//!
|
|
//! //
|
|
//! // Fill or empty the FIFO, and either continue the current operation or
|
|
//! // start the next one in the queue. If there was a callback, it will be
|
|
//! // called here.
|
|
//! //
|
|
//! am_hal_iom_queue_service(0, ui32Status);
|
|
//!
|
|
//! //
|
|
//! // Clear the interrupts before leaving the ISR.
|
|
//! //
|
|
//! am_hal_iom_int_clear(ui32Status);
|
|
//! }
|
|
//! @endcode
|
|
//!
|
|
//! @return
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_queue_service(uint32_t ui32Module, uint32_t ui32Status)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Service the FIFOs in case this was a threshold interrupt.
|
|
//
|
|
am_hal_iom_int_service(ui32Module, ui32Status);
|
|
|
|
//
|
|
// If the last interrupt was a "command complete", then the IOM should be
|
|
// idle already or very soon. Make absolutely sure that the IOM is not in
|
|
// use, and then start the next transaction in the queue.
|
|
//
|
|
if ( ui32Status & AM_HAL_IOM_INT_CMDCMP )
|
|
{
|
|
if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
|
|
{
|
|
am_hal_iom_queue_start_next_msg(ui32Module);
|
|
}
|
|
}
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Enable selected IOM Interrupts.
|
|
//!
|
|
//! @param ui32Module - Module number.
|
|
//! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
|
|
//!
|
|
//! Use this function to enable the IOM interrupts.
|
|
//!
|
|
//! @return None
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_int_enable(uint32_t ui32Module, uint32_t ui32Interrupt)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
|
|
AM_REGn(IOMSTR, ui32Module, INTEN) |= ui32Interrupt;
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Return the enabled IOM Interrupts.
|
|
//!
|
|
//! @param ui32Module - Module number.
|
|
//!
|
|
//! Use this function to return all enabled IOM interrupts.
|
|
//!
|
|
//! @return all enabled IOM interrupts.
|
|
//
|
|
//*****************************************************************************
|
|
uint32_t
|
|
am_hal_iom_int_enable_get(uint32_t ui32Module)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
return AM_REGn(IOMSTR, ui32Module, INTEN);
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Disable selected IOM Interrupts.
|
|
//!
|
|
//! @param ui32Module - Module number.
|
|
//! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
|
|
//!
|
|
//! Use this function to disable the IOM interrupts.
|
|
//!
|
|
//! @return None
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_int_disable(uint32_t ui32Module, uint32_t ui32Interrupt)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
|
|
AM_REGn(IOMSTR, ui32Module, INTEN) &= ~ui32Interrupt;
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Clear selected IOM Interrupts.
|
|
//!
|
|
//! @param ui32Module - Module number.
|
|
//! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
|
|
//!
|
|
//! Use this function to clear the IOM interrupts.
|
|
//!
|
|
//! @return None
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_int_clear(uint32_t ui32Module, uint32_t ui32Interrupt)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
|
|
AM_REGn(IOMSTR, ui32Module, INTCLR) = ui32Interrupt;
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Set selected IOM Interrupts.
|
|
//!
|
|
//! @param ui32Module - Module number.
|
|
//! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
|
|
//!
|
|
//! Use this function to set the IOM interrupts.
|
|
//!
|
|
//! @return None
|
|
//
|
|
//*****************************************************************************
|
|
void
|
|
am_hal_iom_int_set(uint32_t ui32Module, uint32_t ui32Interrupt)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return;
|
|
}
|
|
|
|
AM_REGn(IOMSTR, ui32Module, INTSET) = ui32Interrupt;
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
//! @brief Return the IOM Interrupt status.
|
|
//!
|
|
//! @param ui32Module - Module number.
|
|
//! @param bEnabledOnly - return only the enabled interrupts.
|
|
//!
|
|
//! Use this function to get the IOM interrupt status.
|
|
//!
|
|
//! @return interrupt status
|
|
//
|
|
//*****************************************************************************
|
|
uint32_t
|
|
am_hal_iom_int_status_get(uint32_t ui32Module, bool bEnabledOnly)
|
|
{
|
|
//
|
|
// Validate parameters
|
|
//
|
|
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
if ( bEnabledOnly )
|
|
{
|
|
uint32_t u32RetVal = AM_REGn(IOMSTR, ui32Module, INTSTAT);
|
|
return u32RetVal & AM_REGn(IOMSTR, ui32Module, INTEN);
|
|
}
|
|
else
|
|
{
|
|
return AM_REGn(IOMSTR, ui32Module, INTSTAT);
|
|
}
|
|
}
|
|
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// End Doxygen group.
|
|
//! @}
|
|
//
|
|
//*****************************************************************************
|