

SBL-SUF-1p2 Page 1 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

Apollo3-Blue
Secure Update Flow

Revision 1.3
Mar 2019

SBL-SUF-1p2 Page 2 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

Revision History
Date Revision History Reviser

Mar 22, 2018 0.1 Initial Version J. Shah

Mar 29, 2018 1.0 Apollo3-Blue SDK Alpha Release J. Shah

June 28, 2018 1.1 Further clarifications on OTA Descriptor &
Device recovery
Clarification on customer specific magic
numbers

J. Shah

Feb 2, 2019 1.2 Updated to reflect the SBL-V3
functionality.

D. Munsinger

Mar 14, 2019 1.3 Updated Secondary Bootloader Section
Updated Wired Update Sequence
diagram

J. Shah

SBL-SUF-1p2 Page 3 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

Table of Contents

1. Introduction .. 5

2. References ... 5

3. General Security Features provided by Apollo3-Blue Secure Bootloader ... 6

3.1 Checksum ... 6

3.2 Authentication ... 6

3.2.1 Two Signatures in the Image .. 6

3.2.2 Extracting the Authentication Key ... 6

3.2.3 Authentication Algorithm ... 6

3.3 Decryption ... 6

3.3.1 Determining Encryption Key.. 6

3.3.2 Decryption Algorithm ... 7

3.4 Anti-Rollback ... 7

3.5 Key Unwrapping .. 7

3.6 Key Revocation ... 7

3.7 Image Protection ... 8

4. Apollo3 Image Headers.. 9

4.1 NonSecure Main/Data ... 9

4.2 Secure Main .. 10

4.3 Secure Child/Data ... 12

4.4 Info0-OTA .. 14

5. Apollo3 Secure In-Field Image Upgrade Flow ... 16

5.1 Image Download ... 16

5.2 OTA Descriptor & OTA Pointer ... 16

5.3 Reset ... 17

5.4 Upgrade verification .. 17

5.5 Installation ... 17

5.6 Feedback... 17

5.7 Advanced Upgrade features ... 18

5.7.1 Integrating Customer Specific Bootloader into the Upgrade flow ... 18

5.7.2 Means to implement “Active/Standby” .. 18

5.7.3 Means to implement “Try before Install” ... 18

6. Apollo3 Wired update/recovery flow .. 19

6.1 Wired Update Messages ... 22

6.1.1 Acknowledgement (ACK) Message .. 22

6.1.2 Connection Establishment (HELLO and STATUS) Messages ... 22

6.1.3 Secure Upgrade (OTADESC) Message ... 23

6.1.4 Wired Download (UPDATE and DATA) Messages... 23

6.1.5 Termination (ABORT) Message .. 26

6.1.6 Reboot (RESET) Message.. 26

6.1.7 Device Recovery (RECOVER) Message .. 26

SBL-SUF-1p2 Page 4 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

7. Device Recovery Procedure .. 28

7.1 Request for Ambiq Recovery Blob (needed for secure parts) .. 28

7.2 Factory Reset using RECOVER message .. 28

8. Secondary Bootloader.. 29

8.1 Device Programming Considerations for Secondary Bootloader ... 29

8.2 Secondary Bootloader programming considerations .. 29

8.2.1 OTA Processing .. 29

8.2.2 Asset Protections .. 30

8.2.3 Debugger Support ... 30

9. Sample OTA Processing for “Customer Main – Secure” Image .. 31

SBL-SUF-1p2 Page 5 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

1. Introduction

This document describes the methods, data formats and protocols supported by the Ambiq Secure Bootloader
(SBL) for both In-Field and Over-the-Wire updates of software of the Apollo3-Blue MCU.

2. References

REF Title File

REF1 Apollo3-Blue Secure Update Flow Apollo3-Blue_Secure_Update_Flow.pdf

REF2 AMOTA Example User's Guide AMOTA_example_user's_guide.pdf

REF3 Apollo3-Blue Security Whitepaper

SBL-SUF-1p2 Page 6 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

3. General Security Features provided by Apollo3-Blue Secure
Bootloader

3.1 Checksum
Each message/image contains a CRC32 checksum, used to ensure integrity. Standard 32b checksum function,
as used in Ethernet FCS is used.

3.2 Authentication
To verify the authenticity of the originator of a message/image, a digital signature is computed and verified over
the sensitive part of the body and verified against the known signature.

3.2.1 Two Signatures in the Image

The Standard Image formats for the OTA upgrades have provision for up to two HMAC signatures, one in
cleartext, and one inside the encrypted blob. This allows flexibility in implementing either MAC-then-Encrypt, or
Encrypt-then-MAC stategy. For most security, both the Signatures can be populated, which will allow for Dual
verification during OTA install, and subsequent verification on each boot.

3.2.2 Extracting the Authentication Key

The message/image contains an Authentication key index. The key index is used to determine the Authentication
Key from the applicable key bank (after any applicable unwrapping).

3.2.3 Authentication Algorithm

Currently only SHA256 HMAC signature is supported.
Signature computation is in accordance with standard HMAC using SHA256 as hash function:

SHA256-HMAC:

ipad = the byte 0x36 repeated 32 times

opad = the byte 0x5C repeated 32 times.

Sign = H(K ⊕ opad, H(K ⊕ ipad, text))

Where H is the SHA256 hash function, and K is the 32 bytes (256 bits) secret key.

3.3 Decryption
To support confidentiality, each message/image provides for the sensitive information to be encrypted at origin.
The image is then decrypted on the device as part of OTA processing.

3.3.1 Determining Encryption Key

The message/image contains an encrypted key (Ke), and a key index. The key index is used to determine a Key
Encryption Key (KEK) from the KEK bank (after any applicable unwrapping).

The Key K used for decryption is determined using following operation:

K = FAES128-CBC(Ke, KEK, IV)

IV is constructed as a sequence of 0’s
Message/Image Decryption

SBL-SUF-1p2 Page 7 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

3.3.2 Decryption Algorithm

We support Advanced Encryption Standard (AES) in the Cipher Block Chaining (CBC) mode.

Currently only Key size of 128b is supported.

cleartext = FAESCBC(ciphertext, K, IV)

The IV is randomly selected for each message/image, and is communicated using the clear portion of the header
along with the Ke.

3.4 Anti-Rollback
Each image header contains a version field. A configurable security policy allows mandatory enforcement of anti-
rollback, where any OTA upgrade of an image with a version same or lower than that of the current image is
rejected.

3.5 Key Unwrapping

To limit the potential damage if a particular device were to be physically attacked, exposing the stored keys, the
underlying design supports a key wrapping mechanism using which the programmed values can be bound to a
part, and hence not usable across other devices.

The stored key (Kw) is bound to the part by mean of unique 64b ChipID.

The programmed values are determined by wrapping the real keys at the time of manufacturing, and are unwrapped
on the device as part of security operations to extract the real key.

K = Funwrap(Kw, Kunwrap, ChipID)

Unwrapping function Funwrap is configurable, and Kunwrap is the key used for unwrapping.

Fort best wrapping security, AES128-CBC can be used as a Key wrapping function.

K = FAES128-CBC(Kw, Kunwrap, IV)

 IV represents Initialization Vector – which is generated from the 64 bit ChipID

o IV = (ChipID | ChipID << 64)

 Here Kunwrap is the unique unwrapping key

o For INFO0 customer key storage area, this the customer key (CK) programmed by the customer

3.6 Key Revocation
The key storage area is organized as multiple 128b slots, each identified using a key index.
Key Index 0-7 are reserved for Keys in Ambiq key storage area, and key index 8-15 represent the keys in the
INFO0.

Corresponding to each key slot in the INFO area, there is a revocation mask using which the programmed keys
can be revoked in field if a breach is discovered.

Each bit in the revocation mask (starting with msb) correspond to a key index, and if cleared to 0 – indicates that
the key has been revoked and hence no longer acceptable for security validation.

Separation revocation masks are provisioned for Authentication Keys and the Key Encryption Keys (KEK) used
for decryption.

SBL-SUF-1p2 Page 8 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

3.7 Image Protection
On successful installation through SBL, the image header can also be used to direct the SBL to apply image
protection features to the corresponding flash blocks. The flash blocks are specified in 16K granularity.

The blocks can be marked as “Write-Protected” to prevent overwriting the images either intentionally using
malicious programs, or unintentionally. Such Write-protected images can be upgraded only through SBL by
maintaining the secure upgrade trust chain.

The blocks can be marked as “Copy-Protected” to prevent Read access to the pages. This can be used to avoid
exposing sensitive algorithms or programs from prying eyes. Care must be taken when using this feature to
protect executable code – so as to generate the code using appropriate tools options so that there are no data
reads in the code memory.

SBL-SUF-1p2 Page 9 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

4. Apollo3 Image Headers

4.1 NonSecure Main/Data
This is the image format for the non-secure image. Note that as part of install, the header is discarded.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0 E

w1

w2 AIN CIN RSV RSV

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

w13

w14

w15

w16

w17

w18

w19

w20

w21

w22

w23

w24

w25

w26

w27

w28 RSV RSV

w29

w30

w31

w32

w33

w34

w35

w36

wN

En
cr

yp
ti

o
n

Reserved

256-bit Install HMAC

128-bit Initialization Vector (IV)

Plaintext

Header

Magic Number Rsv BLOB Size (in bytes)

CRC checksum

RSV RSV Reserved KEK Indx Enc Algo Auth Key Indx Auth Algo

C
R

C

In
st

al
l H

M
A

C

{128-bit KeyENC}KEK

Body

Reserved

Load Address

Reserved

Reserved

Reserved

Firmware BLOB

. . .

SBL-SUF-1p2 Page 10 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

4.2 Secure Main
This is the image format for the Secure main firmware image. The headers are left intact in the flash, for SBL to
be able to verify the image on each bootup time.

256-bit Install HMAC 256 bit HMAC signature of the Install Blob following

128-bit IV 128-bit Initialization Vector used for seeding the encryption/decryption of the image

Auth Key Indx Authentication Key Index - this index specifies which authentication key should be used within the Auth Key bank for authentication of this image

Auth Algo

Authentication Algorithm - specifies which algorithm is to be used for authentication the image

 0: N/A

 1: SHA-256

 others: not supported

Version Version number for the image

256-bit HMAC 256 bit HMAC signature of the clear blob following

Load Address Specifies the address where the image is to be installed (applicable to OTA only)

BLOB Size Size of the image blob body (in bytes)

Key-Encryption-Key Index - this index specifies which KEK should be used within the KEK bank for all key unwrap functions

Enc Algo

Encryption Algorithm - specifies which algorithm is to be used for decrypting the image

 0: N/A

 1: AES-128 CBC

 others: not supported

CRC Checksum CRC checksum signature for the image. CRC is computed over the "CRC" region marked on the decrypted blob.

AIN Install-Authenticate enable bit - When '1', the image must be authenticated on installation

CIN Install-CRC enable bit - When '1', the image must be CRC verified on installation

KEK Indx

Magic Number Unique 8-bit value used to reference a valid image type. Non-secure firmware image type magic number is 0xCB.

E Encrypt bit - When '1', the image must be decrypted

{128-bit KeyENC}KEK 128-bit KEK wrapped encryption key

SBL-SUF-1p2 Page 11 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0 E

w1

w2 AIN CIN ABT CBT

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

w13

w14

w15

w16

w17

w18

w19

w20

w21

w22

w23

w24

w25

w26

w27

w28 C W

w29 EP

w30

w31

…

wM+30

wM+31

…

w62

w63

w64

w65

w66

w67

w68

w69

w70

w71

w72

w73

wN

Magic Number BLOB Size (in bytes)

Auth Key Indx Auth AlgoReserved

Reset Vector

Reserved

256-bit Install HMAC

128-bit Initialization Vector (IV)

256-bit HMAC

Plaintext

Header

C
R

C

In
st

al
l H

M
A

C

{128-bit KeyENC}KEK

Body

Rsv

RSV RSV

Reserved

Reserved

Reserved

Reserved

Stack Pointer (SP)

CRC checksum

KEK Indx Enc Algo

En
cr

yp
ti

o
n

Load Address

H
M

A
C

Image Blob Ptr0

Image Blob Ptr1

Image Blob PtrM-1

Image Blob PtrM

Firmware BLOB

. . .

VersionReserved

SBL-SUF-1p2 Page 12 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

4.3 Secure Child/Data
This is the image format for the Secure child firmware or data image. The headers are left intact in the flash, for
SBL to be able to verify the image on each bootup time (if referenced by main).

Version Version number for the image

Install-CRC enable bit - When '1', the image must be CRC verified on installationCIN

Magic Number

256-bit HMAC

Auth Algo

Auth Key Indx

Enc Algo

KEK Indx

128-bit IV

128-bit KEK wrapped encryption key

W

Copy Protect - When '1', this bit indicates that the image should be copy protected after installation

Image Blob Ptr Pointer(s) to a secondary image blob

EP Erase-Previous - When '1', this bit indicates that the previous image should be erased as part of OTA

C

Write Protect - When '1', this bit indicates that the image should be write protected after installation

Specifies the address where the image is to be installed (applicable to OTA only)

CBT

256-bit Install HMAC

ABT

128-bit Initialization Vector used for seeding the encryption/decryption of the image

{128-bit KeyENC}KEK

Key-Encryption-Key Index - this index specifies which KEK should be used within the KEK bank for all key unwrap functions

Encryption Algorithm - specifies which algorithm is to be used for decrypting the image

 0: N/A

 1: AES-128 CBC

 others: not supported

Authentication Key Index - this index specifies which authentication key should be used within the Auth Key bank for authentication of this image

Authentication Algorithm - specifies which algorithm is to be used for authentication the image

 0: N/A

 1: SHA-256

 others: not supported

Load Address

256 bit HMAC signature of the clear blob following

Boot-Authenticate enable bit - When '1', the image must be authenticated at boot time

Boot-CRC enable bit - When '1', the image must be CRC verified at boot time

256 bit HMAC signature of the Install Blob following

Unique 8-bit value used to reference a valid image type. Customer sbl_main or main firmware image type magic number is 0xC0.

BLOB Size Size of the image blob body (in bytes)

CRC Checksum CRC checksum signature for the image. CRC is computed over the "CRC" region marked on the decrypted blob.

Encrypt bit - When '1', the image must be decrypted

Install-Authenticate enable bit - When '1', the image must be authenticated on installationAIN

E

SBL-SUF-1p2 Page 13 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0 E

w1

w2 AIN CIN ABT CBT

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

w13

w14

w15

w16

w17

w18

w19

w20

w21

w22

w23

w24

w25

w26

w27

w28 C W

w29 RSV

w30

w31

w32

w33

w34

w35

w36

wN

Enc Algo

Reserved

256-bit Install HMAC

128-bit Initialization Vector (IV)

Plaintext

Header

RSV RSV Reserved

C
R

C

{128-bit KeyENC}KEK

Body

256-bit HMAC

Magic Number BLOB Size (in bytes)

CRC checksum

Auth Key Indx Auth Algo

Rsv

Load Address

KEK Indx

. . .

Reserved Version

H
M

A
C

Reserved

Reserved

Firmware BLOB

In
st

al
l H

M
A

C

En
cr

yp
ti

o
n

SBL-SUF-1p2 Page 14 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

4.4 Info0-OTA
This is the image format for the OTA message for INFO0 update.

Version Version number for the image

Magic Number Unique 8-bit value used to reference a valid image type. Customer child firmware image type magic number is 0xCC.

BLOB Size Size of the image blob body (in bytes)

CRC Checksum

E Encrypt bit - When '1', the image must be decrypted

CRC checksum signature for the image. CRC is computed over the "CRC" region marked on the decrypted blob.

AIN Install-Authenticate enable bit - When '1', the image must be authenticated on installation

CIN Install-CRC enable bit - When '1', the image must be CRC verified on installation

ABT Boot-Authenticate enable bit - When '1', the image must be authenticated at boot time

CBT Boot-CRC enable bit - When '1', the image must be CRC verified at boot time

W Write Protect - When '1', this bit indicates that the image should be write protected after installation

256-bit HMAC 256 bit HMAC signature of the clear blob following

Load Address Specifies the address where the image is to be installed (applicable to OTA only)

C Copy Protect - When '1', this bit indicates that the image should be copy protected after installation

Auth Algo

Authentication Algorithm - specifies which algorithm is to be used for authentication the image

 0: N/A

 1: SHA-256

 others: not supported

{128-bit KeyENC}KEK 128-bit KEK wrapped encryption key

128-bit IV 128-bit Initialization Vector used for seeding the encryption/decryption of the image

KEK Indx Key-Encryption-Key Index - this index specifies which KEK should be used within the KEK bank for all key unwrap functions

Auth Key Indx Authentication Key Index - this index specifies which authentication key should be used within the Auth Key bank for authentication of this image

256-bit Install HMAC 256 bit HMAC signature of the Install Blob following

Enc Algo

Encryption Algorithm - specifies which algorithm is to be used for decrypting the image

 0: N/A

 1: AES-128 CBC

 others: not supported

SBL-SUF-1p2 Page 15 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0 E

w1

w2 AIN CIN

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

w13

w14

w15

w16

w17

w18

w19

w20

w21

w22

w23

w24

w25

w26

w27

w28

w29

w30

w31

w32

w33

w34

w35

w36

wN

Plaintext

Header

Magic Number Rsv BLOB Size (in bytes)

CRC checksum

RSV RSV Auth AlgoReserved KEK Indx Enc Algo Auth Key Indx

Body

Reserved

. . .

En
cr

yp
ti

o
nSize in words Word Offset

INFO_KEY

Reserved

Reserved

info0 update BLOB

C
R

C

In
st

al
l H

M
A

C

{128-bit KeyENC}KEK

Reserved

256-bit Install HMAC

128-bit Initialization Vector (IV)

Size in words

Word Offset Specifies the offset (in 4 byte multiple) in the infospace to be updated

Specifies the size (in 4 byte multiple) of the infospace update blob

256-bit Install HMAC 256 bit HMAC signature of the Install Blob following

128-bit IV 128-bit Initialization Vector used for seeding the encryption/decryption of the image

Install-CRC enable bit - When '1', the image must be CRC verified on installation

Auth Key Indx Authentication Key Index - this index specifies which authentication key should be used within the Auth Key bank for authentication of this image

Auth Algo

Authentication Algorithm - specifies which algorithm is to be used for authentication the image

 0: N/A

 1: SHA-256

 others: not supported

KEK Indx Key-Encryption-Key Index - this index specifies which KEK should be used within the KEK bank for all key unwrap functions

BLOB Size Size of the image blob body (in bytes)

CRC Checksum CRC checksum signature for the image. CRC is computed over the "CRC" region marked on the decrypted blob.

INFO_KEY 32b key required for Infospace programming

Enc Algo

Encryption Algorithm - specifies which algorithm is to be used for decrypting the image

 0: N/A

 1: AES-128 CBC

 others: not supported

{128-bit KeyENC}KEK 128-bit KEK wrapped encryption key

Magic Number Unique 8-bit value used to reference a valid image type. Info0 update image type magic number is 0xCF.

E Encrypt bit - When '1', the image must be decrypted

AIN Install-Authenticate enable bit - When '1', the image must be authenticated on installation

CIN

SBL-SUF-1p2 Page 16 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

5. Apollo3 Secure In-Field Image Upgrade Flow

Apollo3 supports a secure in-field image upgrade flow using the pre-flashed Secure Bootloader (SBL). Ambiq
Secure Bootloader has access to the key storage in the InfoSpace and can be used to optionally decrypt,
authenticate and validate upgrade images before installing them. If configured so, only properly signed and
protected images would be allowed in an update.

Ambiq Secure Bootloader can be used to securely update Secure Bootloader itself, Ambiq provided pre-installed
libraries, and the main customer image (could be a secondary bootloader). Ambiq bootloader can also be leveraged
to upgrade third party libraries in the flash.

In addition, the SBL supports non-secure updates when so configured in InfoSpace.

The following sections lists out steps in the secure in-field image update flow.

5.1 Image Download

The In-Field upgrade process is initiated by a user application downloading an image blob to the flash. This part of
the upgrade process is specific to individual deployment scenarios and the user application implementation and is
left to the customers. The Secure Upgrade framework does not mandate any specifics for this process. Depending
on the deployment model, the image download could happen over traditional wired interfaces e.g. SPI/I2C or
wirelessly OTA (“Over the Air”) using BLE. The Upgrade application running on Apollo3 and its counterpart on the
host/cloud side could implement their own protocol to ensure integrity, secrecy and authenticity of the image blob
itself.1

5.2 OTA Descriptor & OTA Pointer

The download application builds an OTA Descriptor containing the information about the upgrade image blob(s)
corresponding to the update requests.

OTA Descriptor needs to be built at a page aligned address in flash.

The framework supports more than one image to be upgraded in same operation. The OTA Descriptor consists of
list of pointers to the image blobs, with a special End of List Marker. This allows the upgrade application to update
more than one images in one boot cycle, e.g. the upgrade application could construct a single OTA Descriptor to
upgrade main firmware as well as certain third party library images located separately in the flash.

The download application communicates the OTA Descriptor information with the Secure Bootloader by means of
a special register, REG_MCU_CTRL_OTAPOINTER.

OTAPOINTER will be initialized as follows:

1 Ambiq Secure Bootloader by itself does not provide means to download the images from a host over BLE. This
functionality, if required, must be built as part of a separate user space application.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MCUCTRL: OTAPOINTER

OTA Descriptor Fa
il

P
en

d

Fa
il

P
en

d

1 1

Most significant 30-bits of OTA Descriptor Address SB
L

V
al

id

Most Significant 30-bits of OTA Image Blob address (Image # 0)

Most Significant 30-bits of OTA Image Blob address (Image # 1)OTA Descriptor terminates
in an entry with all 1's

SBL-SUF-1p2 Page 17 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

 Most significant 30 bits will correspond to most significant 30 bits of OTA Descriptor

 Least Significant bit (bit 0) should be initialized to 1 to indicate a valid OTA Descriptor

 bit 1 should be initialized to 1 if the list contains an SBL OTA

OTA Descriptor points to a list of entries, each corresponding to an OTA blob, list terminating in 0xFFFFFFFF.
Each list entry word comprises of following:

 Most significant 30 bits will correspond to most significant 30 bits of OTA blob pointer

 Blob pointer needs to be aligned to Flash Page boundary (8K)

 Least Significant 2 bits should be initialized to ‘11’ to indicate a valid OTA Pending

After the Secure Bootloader processes an OTA, it clears the least significant bit (bit 0)

 Bit 1 indicates the status of the OTA: 0 for Success, 1 for Failure

 If Bit 0 is still set to 1 (Pending) after the OTA, this implies some other error (e.g. invalid or improperly
formed OTA descriptor list) caused SBL to not process this OTA.

o The OTA can be retried after clearing the issue

5.3 Reset

After accepting the required updates, the SBL or the download application constructs the OTA Descriptor and
initializes the REG_MCU_CTRL_OTAPOINTER register accordingly. The actual Update is only initiated on the next
Reset, which kicks in the bootloader.

5.4 Upgrade verification

As part of boot process, the secure bootloader inspects REG_MCU_CTRL_OTAPOINTER for any updates to be
processed. If present, each update blob is processed as per the configured security policy.

 The security policy can be configured (via InfoSpace) to mandate Authentication to ensure only properly
signed images would be accepted.

 The Secure Bootloader also supports encrypted image blobs, and the same can also be mandated by the
security policy.

Ambiq Secure Bootloader enforces the configured security policy and validates the image blobs against the security
assets in InfoSpace.

After optional decryption and authentication, if the image is found to be good, the bootloader then proceeds with
installation of the image.

Secure Bootloader can also check for validity of third party libraries before installing the main image, if such
dependencies are called for in the main image header.

5.5 Installation

A validated OTA image is installed to its designated place by the Secure Bootloader. Optionally, the Secure
Bootloader can also be instructed to apply protection attributes (Copy and/or Write Protection) to the installed image.

5.6 Feedback

The OTA flow also allows for a feedback to the user application using the same OTA Descriptor – to communicate
the OTA status of individual images back to the initiating application. This is accomplished using the same OTA
Descriptor, as described in section 5.2.

SBL-SUF-1p2 Page 18 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

5.7 Advanced Upgrade features
Apollo3 Secure Upgrade framework also includes provisions for extensions beyond the basic Upgrade as
described above. Following is a list of some of these possibilities.

5.7.1 Integrating Customer Specific Bootloader into the Upgrade flow
Infospace settings provide provisions (SECURITY.PLONEXIT) to allow for the customer key area to be kept open
for secondary bootloader to access for any customer specific image validation, or to apply any further image
protections in the flash. This allows customers to implement advanced features (e.g. external flash support,
different encryption or authentication schemes) which are not included in SBL using their own customer
bootloader.

In addition, Ambiq Bootloader keeps the “unknown” image blobs (identified by magic number in image header)
intact in the OTA descriptor, and passes them on to the Customer Bootloader. This allows for Customer
Bootloader to leverage on the same Upgrade flow, when using advanced Authentication/Encryption Policies not
supported in Ambiq Secure Bootloader. Currently following magic numbers can be used by the Customers for
defining their own images: 0xC1 to 0xCA, 0xCD & 0xCE

It is the responsibility of the secondary bootloader to lock the infospace and the flash protection register access
before passing control to the main firmware, if so desired.

5.7.2 Means to implement “Active/Standby”
For the main firmware image (or the customer bootloader image, if present), an optional scheme can be
implemented which allows for maintaining dual images on the device – marked as Active or Standby.

Ambiq Bootloader relies on infospace fields (MAIN_PTR0 & MAIN_PTR1, along with MAIN_CNT_INDXCTR) to
determine the location of the main firmware image.

5.7.3 Means to implement “Try before Install”

For the main firmware image (or the customer bootloader image, if present), an optional scheme can be
implemented which allows for temporary install of the new image – which would then be made permanent only if it
runs satisfactorily. A handshake mechanism between the new image and the Secure Bootloader allows for the
new image to self-validate itself and instruct the Secure Bootloader to make the install permanent during next
bootup.

Ambiq Bootloader relies on infospace fields (MAIN_PTR0 & MAIN_PTR1, along with MAIN_CNT_INDXCTR) to
determine the location of the main firmware image. When doing an image upgrade of the main firmware, it is
possible to install it at the alternate location. SBL will boot to the newly installed image, which can then do
appropriate sanity checks before updating the MAN_CNT_INDXCTR to instruct SBL to boot to this alternate
image for subsequent boots.

SBL-SUF-1p2 Page 19 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

6. Apollo3 Wired update/recovery flow

Apollo3 SBL provides support for an external host to connect during bootup to upgrade images or to recover a
failing device. SBL initiates Recovery if any of the boot time validations fail or if there is no valid image to boot to.
Override is a feature provided by SBL, using which a forced image upgrade can be initiated using specific GPIO
settings during the boot up.

The SBL uses the INFO0 configuration to determine the interfaces to examine (see SECURITYWIREDCFG : IFC).
It first looks for UART connection, then the IOS connection of either SPI then I2C (these are mutually exclusive).
The UART connection is associated with the timeout (see SECURITYWIREDCFG : TIMEOUT) while the SBL waits
for the initial HELLO packet from the Host. The IOS interface is polled and the SBL uses the Slave Interrupt pin
(see SECURITYWIREDCFG : SLVINTPIN) to indicate to the host that it is ready to receive packets. In this case it
only waits for a fixed timeout of 500msec before exiting the update process.

In all cases, an external host needs to follow a predefined messaging protocol to instruct SBL to upgrade assets on
the device. The following figures illustrates a high level message exchange to initiate an “upgrade” using prevalent
security policies of the device.

Figure 1 shows the process for update/recovery when using the UART. In this case the DATA packets are sent as
up to 8KB packets. The process starts with a HELLO/STATUS exchange within the timeout period. It ends with
the RESET/ACK exchange which sends the SBL into SWPOR or SWPOI reset.

Figure 2 shows the process for update/recovery when using the IOS as SPI or I2C interface. The process starts
with the Host resetting the Apollo3-Blue using nRST signal. Once initialization of the configured interface is
complete, the SBL raises the Slave Interrupt pin to indicate it is ready to accept packets over the IOS Direct memory
interface. All packets from the Host to the SBL are limited to 120 bytes due to the maximum LRAM memory size.
This means the packets from the Host must be disassembled and then reassembled by the SBL-V3. Disassembly
is done by adding a 32-bit header to each packet as follows:

typedef struct

{

uint32_t length : 16;

uint32_t resv : 14;

uint32_t bEnd : 1;

uint32_t bStart : 1;

} am_secboot_ios_pkthdr_t;

The start and end flags indicate the packets that represent the first and last of an original SBL wired protocol
packet. The original packet data follows up to 116 bytes. The 116-byte Data Fragments compose an entire
original DATA message and are stored by SBL-V3 up to 8KB. There is limited error checking except that the total
bytes received must equal the length in the original message or it will be rejected.

Note that because the FIFO mode is used for Slave to Host transfers, the message size limit is 1023 bytes so
disassembly/reassembly is not required.

SBL-SUF-1p2 Page 20 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

Host Apollo3

Override/
Recovery

Reboot

Reboot

Override/
Recovery

Figure 1 – UART Wired Update/Recovery Process

SBL-SUF-1p2 Page 21 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

Host Apollo3

Power-up, Reset
and Initialization

Initialize
IOS

Reset/
Connection

Establishment

Start Update

Data Message
Disassembly/
Reassembly

ACK [0]

A larger DATA message
(up to 8K bytes)

must be broken up into
individual IOS DATA

message fragments of
up to 116-bytes with
the 4-byte IOS packet

header.
Multiple DATA

messages compose the
overall image to be

downloaded

Reset/Ack
after final

Data message

SBL Resets

Data Message
Disassembly/
Reassembly

ACK [N]

Figure 2 – IOS Wired Update/Recovery Process

SBL-SUF-1p2 Page 22 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

6.1 Wired Update Messages

All the message formats below assume little-endian byte order.

Each message starts with a common header which defines the following message type and length, along with a
CRC for error checking.

6.1.1 Acknowledgement (ACK) Message

The SBL acknowledges most of the messages received using an ACK message (except for RECOVER, which is
not acknowledged unless encountering a failure, and HELLO, which is acknowledged using STATUS message).
Acknowledgements for DATA messages (described later), also include a sequence number, which can be used to
implement a retransmission mechanism at host side if the connection medium is lossy.

6.1.2 Connection Establishment (HELLO and STATUS) Messages

There is initial handshake between the host and SBL which can assist in determining the reason why SBL got into
the wired update mode. A HELLO message is sent from host, to which the SBL responds with a STATUS
message. The STATUS message also provides information about the largest size of the image blob that can be
downloaded using SBL.

Common Header
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0

w1

CRC32

Length
Header

Message Type

CRC32 CRC32 computed over the rest of message

Message Type

Message Type

0 = HELLO,

1 = STATUS,

2 = OTADESC,

3 = UPDATE,

4 = ABORT,

5 = RECOVER,

6 = RESET,

7 = ACK,

8 = DATA,

Length Total Length of message (including header)

Ack Message
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0

w1

w2

w3

w4

Sequence# Next Sequence number expected (Only relevant for DATA ACK)

Sequence #

SrcMsg Message type being acknowledged

Status Status (ACK/NACK)

Header
CRC32

Length = 20 Message Type = 7

SrcMsg

Status

SBL-SUF-1p2 Page 23 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

6.1.3 Secure Upgrade (OTADESC) Message

Upgrade for the firmware images using wired update undergoes the same secure OTA flow as applicable to wireless
OTA. SBL just provides means to do wired download for the image blobs. So, in accordance there are messages
which instruct SBL to create an OTA Descriptor, followed by download of one or more image blobs (using UPDATE
and DATA messages).

SBL reserves the complete flash page starting at the specified address for the purpose of building the OTA
Descriptor.

6.1.4 Wired Download (UPDATE and DATA) Messages

Any upgrade on the device comprise of an UPDATE message which describes the nature and size of upgrade. It
also contains the required security information for verification of the image. The UPDATE message is then followed
by zero or more DATA messages to send the actual Image blob. After all the data is received, SBL verifies the
integrity and validates it as per the prevalent security policy.

Hello Message
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0

w1

Status Message
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

w13

w14

w15

w16

w17

w18

w19

w20

w21

Current State

Max Image Size Maximum size of blob that can be transferred using UPDATE command

Length = 88

Header
CRC32

Length = 8 Message Type = 0

Header
CRC32

Message Type = 1

Version

State Current Bootloader state

Max Download Image Size

Current Status

Status Current Boot Status

Version Bootloader Version information

AMInfo Aux information - only for Ambiq Micro usage

AMInfo

OTA Descriptor Message
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0

w1

w2

OTA Descriptor Address Flash address where to build OTA Descriptor (must be page aligned)

Header
CRC32

Length = 12 Message Type = 2

OTA Descriptor Address

SBL-SUF-1p2 Page 24 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

To avoid corrupting existing flash space with corrupted downloads, the image blobs are downloaded to SRAM, and
written to flash only after verification for integrity & authentication. This implies that individual wired downloads are
limited in size based on the available SRAM. Bigger size blobs can still be transferred by splitting them accordingly.

6.1.4.1 Image Transfer

The Image blob downloaded using UPDATE/DATA messages itself is constructed as below.

Update Message
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0

w1

w2

w3

w4

w5

w6

w7

wN

Data Message
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0

w1

w2

w3

w4

w5

wN

Valid Size Size of part of Image Blob in this message (optional)

(optional) [partial] Wire Update Image Blob

. . .

Valid Size

Total Size Total Size of Image Blob

Blob CRC32 CRC32 computed over Image Blob

Header
CRC32

Length = 20++ Message Type = 3

Total Size

Blob CRC32

Sequence #

Header
CRC32

Length = 12++ Message Type = 8

Sequence# Sequence number - Byte offset within the Image Blob which corresponds to following Data

[partial] Wire Update Image Blob

. . .

SBL-SUF-1p2 Page 25 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

Wired Update Image Blob
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

w13

w14

w15

w16

w17

w18

w19

w20 O

w21

w22

w23

w24

w25

w26

w27

w28

w26

w27

w28

w29

w30

Plaintext

Header

RSV KEK Indx RSV Enc Algo

Reserved

Reserved

256-bit HMAC

128-bit Initialization Vector (IV)

RSV Auth Key Indx RSV Auth Algo

Reserved

Body

RSV RSV RSV Image Type

En
cr

yp
ti

o
n

Program Key

Address

Size

Update BLOB

H
M

A
C

{128-bit KeyENC}KEK

Address Address in flash to load the image to (For INFO0-NO-OTA update - this implies the offset in the Infospace where the update needs to happen in 4-byte multiples)

Size Size of the Update Blob

Identifies the type of image

0 = SBL,

1 = AM3P,

2 = PATCH,

3 = MAIN,

4 = CHILD,

5 = OTHER,

6 = NONSECURE,

7 = INFO0,

32 = INFO0-NO-OTA

O Implying an OTA process request

Program Key 32-b key required for programming the update (INFO_KEY for INFO0-NO-OTA, PROG_KEY for all other image types)

KEK Indx Key-Encryption-Key Index - this index specifies which KEK should be used within the KEK bank for all key unwrap functions

Enc Algo

Encryption Algorithm - specifies which algorithm is to be used for decrypting the image

 0: N/A

 1: AES-128 CBC

 others: not supported

Auth Key Indx Authentication Key Index - this index specifies which authentication key should be used within the Auth Key bank for authentication of this image

Auth Algo

Authentication Algorithm - specifies which algorithm is to be used for authentication the image

 0: N/A

 1: SHA-256

 others: not supported

256-bit HMAC 256 bit HMAC signature of the Install Blob following

128-bit IV 128-bit Initialization Vector used for seeding the encryption/decryption of the image

{128-bit KeyENC}KEK 128-bit KEK wrapped encryption key

Image Type

SBL-SUF-1p2 Page 26 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

This Wired Download mechanism can be used to write some data to flash directly, direct program info0, or to
download an image blob to the device for subsequent OTA by controlling the ‘O’ flag in the downloaded image blob
header.

An INFO0 program (using ImageType = INFO0-NO-OTA) results in immediate Reboot of the device after the last
DATA message is received and acknowledge.

6.1.5 Termination (ABORT) Message

A Download in progress can be aborted using ABORT message. Host has a choice to continue the connection, or
instruct SBL to quit the connection.

6.1.6 Reboot (RESET) Message

The Image blobs downloaded through UPDATE/DATA messages will have ‘O’ bit set to instruct SBL to schedule
an OTA using the downloaded image. Multiple images can be combined together for the download step using this
process. Actual Image upgrade is only initiated when a RESET message is received, as part of regular OTA
processing by SBL.

6.1.7 Device Recovery (RECOVER) Message

Device Recovery procedure allows the user to factory reset the device. Its usage is different depending on whether
it is a secure or non-secure device.

A corrupt INFO0 (e.g. invalid signature, or invalid values for Security fields) on a secure SKU Apollo3-Blue MCU
causes SBL to go into a “recovery” mode. The only option possible in this case is to use the Wired Update feature
to send a “RECOVER” message with proper credentials to do a factory-reset. There are multiple level of security
put in place for this.

 To generate a RECOVER message with proper credentials, customer would need to contact Ambiq using
a secure channel2 and provide certain details (Unique CustomerID assigned to them, and a CHIP Part#
along with a unique 128b Nonce value). Ambiq will then provide a “Recovery Key”, which is bound to the
CustomerID, nonce and particular part.

 The “RECOVER” message contains this key along with customer supplied Nonce & CustomerID. The
Recovery Key is authenticated by SBL using Ambiq Keys. Thereafter, only if all the parameters match – a
factory reset is issued for the part, which erases INFO0 and the user flash.

2 Implementation of the infrastructure to support secure recovery is a work in progress and details will be provided
in future documentation.

Abort Message
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0

w1

w2 Q

Header
CRC32

Length = 12 Message Type = 4

Q Instructing Bootloader to quit the host connection

Reserved

Reset Message
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0

w1

w2 POR POI

POR Reset mode

Header
CRC32

Length = 12 Message Type = 6

POI POI Reset mode

Reserved

POR

SBL-SUF-1p2 Page 27 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

Recover Message
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

w13

w14

wN

Ambiq Provided Recovery Blob

Message Type = 5

Customer ID

Nonce 128b Nonce Value - should correspond to the one given to Ambiq to generate the Recovery blob

Recovery Blob Recovery Blob generated by Ambiq and provided to customer

Recovery Key

Nonce

Customer ID Unique Customer ID for the user

Recovery Key 128b Recovery Key value

Header
CRC32

Length = 44++

SBL-SUF-1p2 Page 28 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

7. Device Recovery Procedure

Ambiq provides means to factory-reset a device. Likely reason could be misconfiguration of INFO0, resulting in
bricked secure part. Even for the non-secure parts, this procedure could be used to revert back to the factory
settings.

7.1 Request for Ambiq Recovery Blob (needed for secure parts)

Customer would need to contact Ambiq using a secure channel (i.e. the Ambiq Security Portal – using their unique
credentials) and provide certain details

 Unique customerID assigned to them

 a CHIP Part# (A contiguous Range is supported – if all owned by Amazon)

 The range will be validated against Ambiq records to ensure they were shipped to the customer (based on
customer ID)

 A unique 128b nonce value

Once the provided information is validated, Ambiq generates a unique “Recovery Blob”, which is bound to the
customerID, nonce and particular Part(s). The contents of the blob are encrypted and signed by Ambiq.

7.2 Factory Reset using RECOVER message

To factory reset a device, a wired host needs to send a special RECOVER message to SBL during the Wired
Update phase, as below.

This message also contains the Ambiq provided Recovery Blob, as generated above through a separate channel.

Recover Message
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0

w1

w2

w4

w5

w6

w7

w8

w9

w10

w11

w12

w13

w14

wN

Ambiq Provided Recovery Blob

. . .

Message Type = 5

Customer ID

Nonce 128b Nonce Value - should correspond to the one given to Ambiq to generate the Recovery blob

Recovery Blob Recovery Blob generated by Ambiq and provided to customer

Recovery Key

Nonce

Customer ID Unique Customer ID for the user

Recovery Key 128b Recovery Key value

Header
CRC32

Length = 44++

SBL-SUF-1p2 Page 29 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

8. Secondary Bootloader

Apollo3 Secure Boot/Update flow allows for provision to incorporate a secondary bootloader. A Secondary
bootloader could be used to supplement the core capabilities of the native Apollo3 SBL. Potential reasoning for
implementing one could be:

 Need to support different authentication/encryption algorithms

 Need to support external FLASH

 Other vendor specific enhancements

For designs incorporating a secondary bootloader, the latter replaces the main image. SBL treats the Secondary
bootloader as the main image and verifies/updates the same using native boot/update flow. The secondary
bootloader can then implement the additional features before passing control to the main firmware.

The native Secure Update flow can be leveraged to pass/return information about the proprietary OTA images to
the secondary bootloader as well. All that is required is for the OTA image headers (as pointed to from the OTA
Descriptor) to be residing in internal flash, and have the same structure for the first four bytes (specifically the magic
number field). Images with the following magic numbers are considered proprietary image containers, and are
passed on to the Secondary Bootloader for further processing transparently.

 Magic number passed transparently to secondary bootloader: 0xC1 – 0xCA, 0xCD, 0xCE

8.1 Device Programming Considerations for Secondary Bootloader

There are certain considerations while OEM programming a design with a secondary bootloader.

 Ensure INFO0_SECURITY. PLONEXIT is set to 0 when programming customer infospace

o This ensures INFO0 space (including the key area) is accessible to be used for image verification
purpose

o It also allows Secondary bootloader to implement page lockouts for Read/Write protection by
clearing additional bits in the register REG_MCU_CTRL_FLASH_WPROT* &
REG_MCU_CTRL_FLASH_RPROT*

8.2 Secondary Bootloader programming considerations

8.2.1 OTA Processing

When using this extended Update flow using the special magic numbers, secondary bootloader undergoes the
following processing sequence:

 Access the OTA Descriptor using the register REG_MCU_CTRL_OTAPOINTER.

 It processes the OTA images by scanning through the list with valid images marked as “Pending”.

o Note: OTA images in external flash could be handled in Secondary Bootloader by building a dummy
OTA header in internal flash which then contains pointer to actual image resident in external flash.

 It is the responsibility of the Secondary Bootloader to provide feedback for respective OTA images to the
main firmware

o OTA feedback – provided by clearing respective bit(s) in the OTA descriptor, as described in
section 5.2

 “Invalidate” the OTA pointer once all the images are processed.

o Clear bit OTAVALID in register REG_MCU_CTRL_OTAPOINTER

SBL-SUF-1p2 Page 30 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

8.2.2 Asset Protections

It is the responsibility of the secondary bootloader code to do the following before transferring to the main image to
ensure proper security.

 “lock” the INFO0 space

o This is accomplished by programming an invalid value (Anything other than the 128b customer key
stored in infospace INFO0_CUSTOMER_KEY*) as customer key, e.g. by calling
am_hal_security_set_key() with lockType as AM_HAL_SECURITY_LOCKTYPE_CUSTOMER)

 Restrict further access to flash protection registers

o This is accomplished by asserting the protection lock by writing 1 to PROTLOCK bit in register
REG_MCU_CTRL_BOOTLOADER

8.2.3 Debugger Support

There is one more consideration when implementing the Secondary Bootloader. If Debugger Support is disabled
during the Secondary Bootloader phase (Controlled by SDBG bit in INFO0_SECURITY), Secondary Bootloader to
implement additional logic to check if a halt is requested by the debugger after the bootloader, and if so halt the
processor to allow a debugger to connect.

 Checking for a Halt request from Debugger – Check if Least Significant Bit of register
REG_MCU_CTRL_SCRATCH0 is set

 If set, clear the bit & halt the processor using DHCSR register.

SBL-SUF-1p2 Page 31 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

9. Sample OTA Processing for “Customer Main – Secure” Image

1. Magic Number 0xC0 indicates it is “Customer Main – Secure” image
2. E (Encryption) & AIN (Install time Authentication) values are verified against the minimum SECPOL

configuration from INFO0:SECURITY (e.g. If SECPOL mandates Authentication, this bit MUST be set to
1, or else it is rejected)

3. AIN Set indicates to SBL that the first step as Authentication of the Blob (possibly encrypted)

 AuthKeyIdx is used to determine a Wrapped Key from the Key bank
o The key is checked for revocation based on INFO0: AREVTRACK
o KeyWrap configuration from INFO0:SECURITY is used to unwrap the wrapped key to extract

the real Key to be used

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w0 E

w1

w2 AIN CIN ABT CBT

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

w13

w14

w15

w16

w17

w18

w19

w20

w21

w22

w23

w24

w25

w26

w27

w28 C W

w29 EP

w30

w31

…

wM+30

wM+31

…

w62

w63

w64

w65

w66

w67

w68

w69

w70

w71

w72

w73

wN

En
cr

yp
ti

o
n

Load Address

H
M

A
C

Image Blob Ptr0

Image Blob Ptr1

Image Blob PtrM-1

Image Blob PtrM

Firmware BLOB

. . .

VersionReserved

Plaintext

Header

C
R

C

In
st

al
l H

M
A

C

{128-bit KeyENC}KEK

Body

Rsv

RSV RSV

Reserved

Reserved

Reserved

Reserved

Stack Pointer (SP)

CRC checksum

KEK Indx Enc Algo Auth Key Indx Auth AlgoReserved

Reset Vector

Reserved

256-bit Install HMAC

128-bit Initialization Vector (IV)

256-bit HMAC

Magic Number BLOB Size (in bytes)

SBL-SUF-1p2 Page 32 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

 AuthAlgo is used to determine the Authentication algorithm (Only SHA256 HMAC supported
currently)

 A signature is computed over the image w12 onwards – and verified against the signature in (256b
Install HMAC <w4-w11>)

4. If “E” is set, the image is then decrypted

 KEKIdx is used to determine a Wrapped Key Encryption Key (KEK) from the Key bank
o The key is checked for revocation based on INFO0: KREVTRACK

 KeyWrap configuration from INFO0:SECURITY is used to unwrap the wrapped key to extract
the real KEK to be used

 EncAlgo is used to determine the Authentication algorithm (AES128-CBC supported currently)

 KEK is used to decrypt the Encrypted Encryption Key (w16-w19)

 This Encryption key is then used to decrypt the encrypted blob (w20 onwards) using the IV from w12-
w15

5. ABT Set indicates to SBL to Authentication the image inside the encryption blob

 AuthKeyIdx is used to determine a Key from the Key bank
o The key is checked for revocation based on INFO0: AREVTRACK
o KeyWrap configuration from INFO0:SECURITY is used to unwrap the wrapped key to extract

the real Key to be used

 AuthAlgo is used to determine the Authentication algorithm (Only SHA256 HMAC supported
currently)

 A signature is computed over the image w28 onwards – and verified against the signature in (256b
Install HMAC <w20-w27>)

6. If “CIN” is set, a CRC32 is then computed on the decrypted image (w2 onwards) and matched against

CRC Checksum (w1)
7. Secure Bootloader can also check for validity of third party libraries before installing the main image, if

such dependencies are called for in the main image header (Image Blob Ptr* - w34 onwards).
8. The image (full blob including the header) is “installed” at the address specified by load address (w28)
9. Bits “C” and “W” in w28 can be set to instruct SBL to Read and/or write protect the image after

installation.

SBL-SUF-1p2 Page 33 of 33 ©2019 Ambiq Micro, Inc.

All rights reserved.

Contact Information

Address Ambiq Micro, Inc.

6500 River Place Blvd.
Building 7, Suite 200
Austin, TX 78730

Phone +1 (512) 879-2850
Website http://www.ambiqmicro.com
General Information info@ambiqmicro.com
Sales sales@ambiqmicro.com
Technical Support support@ambiqmicro.com

Legal Information and Disclaimers

AMBIQ MICRO INTENDS FOR THE CONTENT CONTAINED IN THE DOCUMENT TO BE ACCURATE AND RELIABLE. THIS CONTENT
MAY, HOWEVER, CONTAIN TECHNICAL INACCURACIES, TYPOGRAPHICAL ERRORS OR OTHER MISTAKES. AMBIQ MICRO MAY
MAKE CORRECTIONS OR OTHER CHANGES TO THIS CONTENT AT ANY TIME. AMBIQ MICRO AND ITS SUPPLIERS RESERVE THE
RIGHT TO MAKE CORRECTIONS, MODIFICATIONS, ENHANCEMENTS, IMPROVEMENTS AND OTHER CHANGES TO ITS PRODUCTS,
PROGRAMS AND SERVICES AT ANY TIME OR TO DISCONTINUE ANY PRODUCTS, PROGRAMS, OR SERVICES WITHOUT NOTICE.

THE CONTENT IN THIS DOCUMENT IS PROVIDED "AS IS". AMBIQ MICRO AND ITS RESPECTIVE SUPPLIERS MAKE NO
REPRESENTATIONS ABOUT THE SUITABILITY OF THIS CONTENT FOR ANY PURPOSE AND DISCLAIM ALL WARRANTIES AND
CONDITIONS WITH REGARD TO THIS CONTENT, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED WARRANTIES AND CONDITIONS
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT OF ANY THIRD PARTY
INTELLECTUAL PROPERTY RIGHT.

AMBIQ MICRO DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED UNDER ANY
PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT OF AMBIQ MICRO COVERING OR
RELATING TO THIS CONTENT OR ANY COMBINATION, MACHINE, OR PROCESS TO WHICH THIS CONTENT RELATE OR WITH WHICH
THIS CONTENT MAY BE USED.

USE OF THE INFORMATION IN THIS DOCUMENT MAY REQUIRE A LICENSE FROM A THIRD PARTY UNDER THE PATENTS OR OTHER
INTELLECTUAL PROPERTY OF THAT THIRD PARTY, OR A LICENSE FROM AMBIQ MICRO UNDER THE PATENTS OR OTHER
INTELLECTUAL PROPERTY OF AMBIQ MICRO.

INFORMATION IN THIS DOCUMENT IS PROVIDED SOLELY TO ENABLE SYSTEM AND SOFTWARE IMPLEMENTERS TO USE AMBIQ
MICRO PRODUCTS. THERE ARE NO EXPRESS OR IMPLIED COPYRIGHT LICENSES GRANTED HEREUNDER TO DESIGN OR
FABRICATE ANY INTEGRATED CIRCUITS OR INTEGRATED CIRCUITS BASED ON THE INFORMATION IN THIS DOCUMENT. AMBIQ
MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN. AMBIQ MICRO MAKES
NO WARRANTY, REPRESENTATION OR GUARANTEE REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR
PURPOSE, NOR DOES AMBIQ MICRO ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR
CIRCUIT, AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY, INCLUDING WITHOUT LIMITATION CONSEQUENTIAL OR
INCIDENTAL DAMAGES. “TYPICAL” PARAMETERS WHICH MAY BE PROVIDED IN AMBIQ MICRO DATA SHEETS AND/OR
SPECIFICATIONS CAN AND DO VARY IN DIFFERENT APPLICATIONS AND ACTUAL PERFORMANCE MAY VARY OVER TIME. ALL
OPERATING PARAMETERS, INCLUDING “TYPICALS” MUST BE VALIDATED FOR EACH CUSTOMER APPLICATION BY CUSTOMER’S
TECHNICAL EXPERTS. AMBIQ MICRO DOES NOT CONVEY ANY LICENSE UNDER NEITHER ITS PATENT RIGHTS NOR THE RIGHTS
OF OTHERS. AMBIQ MICRO PRODUCTS ARE NOT DESIGNED, INTENDED, OR AUTHORIZED FOR USE AS COMPONENTS IN SYSTEMS
INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR OTHER APPLICATIONS INTENDED TO SUPPORT OR SUSTAIN LIFE, OR
FOR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE AMBIQ MICRO PRODUCT COULD CREATE A SITUATION WHERE
PERSONAL INJURY OR DEATH MAY OCCUR. SHOULD BUYER PURCHASE OR USE AMBIQ MICRO PRODUCTS FOR ANY SUCH
UNINTENDED OR UNAUTHORIZED APPLICATION, BUYER SHALL INDEMNIFY AND HOLD AMBIQ MICRO AND ITS OFFICERS,
EMPLOYEES, SUBSIDIARIES, AFFILIATES, AND DISTRIBUTORS HARMLESS AGAINST ALL CLAIMS, COSTS, DAMAGES, AND
EXPENSES, AND REASONABLE ATTORNEY FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PERSONAL INJURY
OR DEATH ASSOCIATED WITH SUCH UNINTENDED OR UNAUTHORIZED USE, EVEN IF SUCH CLAIM ALLEGES THAT AMBIQ MICRO
WAS NEGLIGENT REGARDING THE DESIGN OR MANUFACTURE OF THE PART.

http://www.ambiqmicro.com/
mailto:info@ambiqmicro.com
mailto:sales@ambiqmicro.com
mailto:support@ambiqmicro.com

