Apollo3-Blue MCU Family
Getting Started Guide

Revision 3.0
Jan 2020

Revision History

Date Revision | History Reviser
Feb 12, 2018 0.1 Initial Version D. Munsinger
Feb 21, 2018 1.0 Minor type edit in create_infoO cmd D. Munsinger
Mar 19, 2018 11 Update create_infoO cmd J. Shah
Added section for OTA
Mar 22, 2018 1.2 Repurposed the document as “Getting J. Shah
Started Guide”. Created separate Guide
for Scripts
Added JLink Script for INFOO
programming
2.0 Updates for SBLv1 J. Shah
July 05, 2018 2.1 Updates for SBLv2 J. Shah
Jan 29, 2019 2.2 Updates for SBLv3 D. Munsinger
Sep 24, 2019 2.3 Updates for Apollo3-Blue-Plus D. Munsinger
Jan 20, 2020 3.0 Updates for SDK Release 2.4.1 J. Shah
GS-SDK-1p10 Page 2 of 25 ©2017 Ambiq Micro, Inc.

All rights reserved.

Contents

T 1 oo [1 o 1o T o P REPRP PP 4
S (=] 0= [PO PRRPR 4
Setting UP the ENVIFONMENToiii i e e e e s e e e e e e e s s e ta e e e e e e e s sanstataeeeaeeeesantatneeeaaeaaan 5
3.1 Preparation of the PYthon ENVIFONMENTiiiiiiiiiie e 5
3.2 Setting UP HOSE CONMNECTIONeeiiiiiiiiie ittt s st e e e st e e s snb e e e e e nbaeeeennbeas 5
3.2.1 USB-UART HOSt CONNECLION ...coiiuttiiieitiiee ittt ettt e sttt e sttt e e st e e e sttt e e ssbeeeesnteeeesnseaeeesanseeeesannaeeens 5
3.2.2 1OS-SPI HOSEt CONNECLIONvviiiiiiiiei ettt sttt ettt e sttt e e sttt e e sttt e s bt e e e ssbeeeesasbeeeeasseeeesansbeeesanseeeens 5
TS N (@ 1S P2 O o [0 1S3 A @0 o 0 1= o1 o] o R PR SRT 6
3.3 [NCC3 T PP P PP PP P PPPPPPPPPPPPPPPPN 6
34 Installing the JLink scripts for APOIIO3-BIUEcoiiiiiiiiiiiie e 6
4. Programming Customer INfOSPACE (INFOO)uuiiiiiiiiieiiiiie ettt et e e e 7
4.1 Generate INFOO fOr UART OPEIALION.ciiiiiiiieiiiiie ettt ettt ettt et e s aibe e e e sabe e e e e aneas 7
4.2 Generate INFOO fOr IOS-SPI OPEIALIONcocuutiiiiiiiie ettt st s b e e e aabe e e e e e 7
4.3 Generate INFOO fOr IOS-12C OPEIALIONciiiieiiiiitie ittt e e e e e e e e e e e e e senbnereeaaeeeean 7
4.4 Program INFOO........ooii ittt e ettt e e e s e s ettt e e e s e s e e et et e e e saannrrreeeeeseaaanne 8
4.4.1 Program INFOO through Wired UPAateeeiiiiiiiiiiiiie ettt 8
4.4.2 Program INFOO through JLINK COMMEANTENoouiiiiiiiiiie it 11
5. Firmware image for NON-SECUIe BOOL...........ccoo i 12
5.1 Using the IAR IDE with Secure BOOLIOAUET............oiiiii it e e e e e e eanes 12
5.2 Programming the device using SBL assisted Wired update............cc.uveeiiiiiniiiiiiiieeiieee e 13
5.2.1 Generating Main Customer Image Upgrade BIOb............ccccoo 13
5.2.2 Wired Update Example — Main CUSIOMET IMAGEcooiiiiiiiiiiiiie ittt 14
5.3 Programming Images With JFIASHLITEooiiiiiiiiei e 20
5.4 Programming Images With JFIASHeii e 20
B. SECUIE BOOT .. 21
6.1 Enabling Secure BOOt iN INFODuuuiiiiiiiiie ettt e et e e e e e e s e sanbeeeeeaeeeeaannnes 21
B2 Firmware image fOr SECUIE BOOTouuiiiiiiiiii ittt e e e 21
7. SecUre BOOHOAAEr UPAALE.......c.uuiiiiiiiiii ittt ettt et e s et e e s e bt e s e bt e e e e nbe e e s eabeas 22
7.1 Create Secure Bootloader (SBL) Wired Update Image blob ..o, 22
i2 Program SBL Upgrade FIFMWAIE............ueiiiiiiiieiiiie ettt sttt e s e e e e e 23
7.3 Program SBL Upgrade Firmware through JLink Commandercooeeiiiiiiiiiiiieeiiiiieieeee e 24
GS-SDK-1p10 Page 3 of 25 ©2017 Ambiq Micro, Inc.

All rights reserved.

1. Introduction

Vanilla Apollo3-Blue & Apollo3-Blue-Plus parts from Ambiq factory are pre-programmed with a Secure Boot Loader,
and an uninitialized INFOO.

In general, initial provisioning of the part would include programming a valid INFOO, and programming the main
firmware image in the flash.

Ambiqg Apollo3-Blue SDK contains a number of python scripts to demonstrate generation of Customer InfoSpace
(INFOO) settings, Customer Main images, and creation of images for the Wired Update protocol over UART.

This document will explain their usage. Unless specifically noted, the content applies to all products in Apollo3-Blue
family of MCUs, even though it may refer to Apollo3-Blue only.

Part of this demonstration is to upgrade the JLink environment to ensure the debugging tools continue to work with
the Apollo3-Blue.

Disclaimer: This document shows the detailed Debug JLink SWO output from the Secure Bootloader. This
output will disappear in a later release and is informational only.

2. References

REF Title File
REF1 Apollo3-Blue Secure Update Flow Apollo3-Blue_Secure_Update_Flow.pdf
REF2 AMOTA Example User's Guide AMOTA_example_user's_guide.pdf
REF3 Apollo3-Blue Security Whitepaper
REF4 Apollo3-Blue Secure Bootloader Scripts | Apollo3-Blue_SBL_Scripts.pdf
User’'s Guide
GS-SDK-1p10 Page 4 of 25 ©2017 Ambiq Micro, Inc.

All rights reserved.

3. Setting up the environment

The Apollo3 EVB comes with INFOO initialized and the default binary_counter example programmed into main (at
0xC000). The python scripts and supporting binary images for these examples can be found in
ltools/apollo3_scripts/

3.1 Preparation of the Python Environment

This document assumes that the user has a python3 environment available. The SBL scripts require the addition
of the python crypto modules. Those can be obtained as follows:

pip install pycryptodome
pip install pyserial

3.2 Setting up Host connection

3.2.1 USB-UART Host Connection
The windows PC will be connected via a USB-UART adapter to EVB.
Apollo3Blue EVB & Apollo3BluePlus EVB pins:

e UART-RX pin 23

e UART-TX pin 22

3.2.2 10S-SPI Host Connection

The following table shows the required Host to Slave connections for I0S-SPI operation. This is only supported on
SBL-v3 onwards for Apollo3. All Apollo3P SBL versions support IOS.

HOST (Apollo3* EVB) SLAVE (Apollo3* EVB + SBL) Signal ‘

GPIO(2) GPIO(4) Slave to Host Interrupt

GPIO(4) GPIO(16) Override — Force SBL to scan for
updates on wired interface(s)

GPIO(5) GPIO(0) SCLK

GPIO(6) GPIO(2) MISO

GPIO(7) GPIO(1) MOSI

GPIO(11) GPIO(3) CSs

GPIO(17) NRST Reset

GND GND Ground

Note: In this configuration the HOST Apollo3Blue EVB and Apollo3BluePlus may be programmed with the
“uart_boot_host” example and the USB-UART connection can be used with the provide python script
“uart_wired_update.py” in the same way as the UART examples below. The uart_boot_host example should be
configured as follows:

GS-SDK-1p10 Page 5 of 25 ©2017 Ambiqg Micro, Inc.
All rights reserved.

3.2.3 10S-12C Host Connection

The following table shows the required Host to Slave connections for I0S-12C operation.

HOST (Apollo3 EVB) SLAVE (Apollo3 EVB + SBL) Signal ‘

GPIO(2) GPIO(4) Slave to Host Interrupt

GPIO(4) GPIO(16) Override — Force SBL to scan for
updates on wired interface(s)

GPIO(5) GPIO(0) I2C SCL

GPIO(6) GPIO(1) 12C SDA

GPIO(17) nRST Reset

GND GND Ground

Note: In this configuration the HOST Apollo3 EVB may be programmed with the “uart_boot_host” example and
the USB-UART connection can be used with the provide python script “uart_wired_update.py” in the same way as
the UART examples below. The uart_boot_host example should be configured as follows:

3.3 Keys

File keys_info.py needs to be created containing customers’ secret keys.
For quick start, a template for this file is included in SDK.
Copy keys_info0.py to keys_info.py

cp keys infoO.py keys info.py

3.4 Installing the JLink scripts for Apollo3-Blue

The Apollo3-Blue MCU is natively supported by the SEGGER JLink tools as of V6.34 by simply selecting
AMA3B1KK-KBR as the target device. The Apollo3-Blue-Plus MCU is natively supported by the SEGGER JLink
tools as of V6.62 by simply selecting AMA3B2KK-KBR as the target device. Ambig recommends using the latest
SEGGER JLink tools and uninstalling previous versions prior to upgrading. Support for earlier versions of the
SEGGER tools is no longer supported in the SDK.

GS-SDK-1p10 Page 6 of 25 ©2017 Ambiqg Micro, Inc.
All rights reserved.

4. Programming Customer InfoSpace (INFOO)

Ambiq recommends programming for the single desired interface (UART, SPI, or I12C) as shown the following script
examples. Itis also possible to enable UART+SPI or UART+I2C, but having both SPI and I12C enabled at the same
time will not work.

4.1

Generate INFOO for UART Operation

Initially it is best to flash a valid INFOO with GPIO override provision (before you play with main image).

4.2

4.3

For Apollo3Blue, create INFOO image with GPIO Override is set to pin 16 (0x10) active low. Baudrate for
INFOO UART is set to 115200 (0x1C200). Main image is expected at 0OxC000. Apollo3Blue is configured
for UART-RX pin 23 (0x17) & UART-TX pin 22 (0x16). The chip type is specified as apollo3.

./create infoO.py --valid 1 info0 --pl 1 --u0 0x1C200c0O0 --ul OxFFFF1617
--u2 0x2 --u3 0x0 --u4 0x0 --ub5 0x0 --main 0xC000 --gpio 0x10 --version
0 --wTO 5000 --chipType apollo3

For Apollo3BluePlus, create INFOO image with GPIO Override is set to pin 16 (0x10) active low. Baudrate
for INFOO UART is set to 115200 (0x1C200). Main image is expected at 0xC000. Apollo3 is configured
for UART-RX pin 23 (0x17) & UART-TX pin 22 (0x16). The chip type is specified as apollo3p

./create infoO.py --valid 1 info0 --pl 1 --u0 0x1C200cO0 --ul OxFFFF1617
--u2 0x2 --u3 0x0 --u4 0x0 --ub5 0x0 --main 0xC000 --gpio 0x10 --version
0 --wTO 5000 --chipType apollo3p

Generate INFOO for I0S-SPI Operation

For Apollo3Blue, create INFOO image with GPIO Override is set to pin 16 (0x10) active low. Main image is
expected at 0xC000. Only the SPI interface is enabled (0x2). The Slave interrupt is set to Pin 4 (0x4).

./create infoO.py --valid 1 info0 --pl 1 --main 0xC000 --gpio 0x10 --
version 0 --wmask 0x2 --wSlInt 0x4 --chipType apollo3

For Apollo3BluePlus, create INFOO image with GPIO Override is set to pin 16 (0x10) active low. Main image
is expected at OxC000. Only the SPI interface is enabled (0x2). The Slave interrupt is set to Pin 4 (0x4).

./create info0.py --valid 1 info0O --pl 1 --main 0xCO000 --gpio 0x10 --
version 0 --wmask O0x2 --wSlInt 0x4 --chipType apollo3p

Generate INFOO for 10S-12C Operation

For Apollo3Blue, create INFOO image with GPIO Override is set to pin 16 (0x10) active low. Main image is
expected at 0xC000. Only the 12C interface is enabled (0x4). The Slave interrupt is set to Pin 4 (0x4).

./create infoO.py --valid 1 info0 --pl 1 --main 0xC000 --gpio 0x10 --
version 0 --wmask 0x4 --wSlInt 0x4 --chipType apollo3

For Apollo3BluePlus, create INFOO image with GPIO Override is set to pin 16 (0x10) active low. Main image
is expected at 0OxC000. Only the 12C interface is enabled (0x4). The Slave interrupt is set to Pin 4 (0x4).

./create info0.py --valid 1 infoO --pl 1 --main 0xCO000 --gpio 0x10 --
version 0 --wmask 0x4 --wSlInt 0x4 --chipType apollo3p

Page 7 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

4.4 Program INFOO
INFOO can be programmed either using a JLink script, or through the SBL assisted Wired Update.

4.4.1 Program INFOO through Wired Update
1. Create INFOO-NOOTA Wired Update Image blob from the INFOO image in the previous step:

./create cust wireupdate blob.py --bin info0O.bin -o info0 wire -i 32 --load-
address 0

2. Reset the Apollo3 EVB by pressing the SYSTEM RESET button as you should see:

B S£GGER 5-Link SWO Viewer V6 38g

File Edt Hep

< I 22 16 15 8 7 0
| Databomatwmdutpotis} T 1 T T T T T T FHTTTTIITT FITTTIrIrT ITrrrrnrw
™ Sty on lop

Len | Stop | Paste |

Mbig Secure Bootlosdex!

Secur=boot ID 1 running vith VIOR @ Ox100 Infod->sign{0] = Ox48easdff Infol-irsign[0)«OxacaDits
Curzrent Reset Stat Ox1l

Infol Version Oxi

Infol Versicn Ox0

Flash Size « 0x100000. SRAM Size = 0x60000
Scratch = Ox0

SEL version 1 installed at Ox0

Infold Valid

OTA State asctiveldx+0 otaDesc = Owffffffft
Initialization dons

Procesding to Validate the Inoges
SecureBoot disabled

Valid Maan image in flash SP=0x10001000. RV+~Oxe%cH
Validation Status Ox0

Will trensfer to Nain@#0xc000

Proceeding to lock all security gates

Binary Counter Exawple
(Timer clock scuxce is LFRC)
123456701

[Devvtz AMAIBTKX-KBR CPUFreq 451130z SWOFreq: 1000 ks 738 bytes

Note the “Info0 Valid”. Our Apollo3 EVBs are shipped with valid INFOO and the binary _counter example
pre-programmed.

3. Holding BTN2 while pressing the SYSTEM RESET button you should see:

Page 8 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

ﬂ SEGGER JLink SWO Viewer V634g — X

File Edt Help

| 4 51

| Data hoss sesubus ports) ?JF-FI-I-T_I_F— F}rrrrfr?’ Ijl"l_I_l_l"l_lg llf_f-f-f-f_rfg

'r Stay on fop Qoo Stop Pause]

Anbig Secqure Bootloader|

SecureBoot ID 1| running with VIOR # Ox100 Infol->sign[0] = OxdBeandff Infol-rsign[0]~OxecaS0ied
Current Feset Stat Oxl

Infcl Version Oxl

Infol Version Ox0

Flash Size » Ox100000. SRAN Size = O0x60000
Scratch = Ox0

SBL version 1 installed at Ox0

Infol Valid

OTh State. sctiveldx=0 otelDesc = Dxtfffefet
Initislizetion done

Force GPID Override

Atteapting Vired update

Initializins UART

Usiting for host on UART

[Dence AMAIBTKK-KER CPUFreq 40113 kb ‘SWOFreq: 1000 kbz 1319 bytes [

4. Within 5 seconds, use the UART Wired Update script to transfer the INFOO-NOOTA blob to the Secure
Bootloader:

./uart _wired update.py -b 115200 COM<X> -r 0 -f info0 wire.bin -i 32

where COM<X> is the PC COM port connected to the Apollo3 EVB. After which the display on the JLink
SWO viewer should be:

Page 9 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

| Bl SEGGER 1Lk SWO Views Ve = x
Ble ft Help
Susbomstmbspotst {7 OO e PO AR

I~ Siy onip Qoo [o™ Powe |

Anbiq Secure Bootloader !

sBoot ID 1 running with VICR @ Ox100 Infob-rsigni{l] = OxdSesaddf Infol-isigni0]=lOxecat0)id
arrent Reset Stat Oxl

Intol Versiom Ox1

Infod Versiom Ox0

Flash s::.o;onamnoom SRAN Size = Ox60000

veraics 1 installed at Ox0
nfol Valid
A State u:umz-o craDesc » OxEEELe04¢

Device: AMAIB IO XER CPUFreq: 48113 kFs SWOFreq 10000Hr 056 bytes
5. Reset the board (without holding BTN2) and you should see:

B SEGGER &-Link SWO Viewer V6 34g - %
File Edit Help

Datetomsmdapott 11T PrOCTrre P frrrrrre

[~ St onio _Wg;l

lAabig Secure Bootloader!

t ID 1 nm-a with VTOR # 0x100 Infol->aign(0] » OxdSeasdel Infol->signi{l]+DxecaS0ibs
t Resst Stat Oxi
Iafo] Versice 0xl
Infcd Versiom Oxf0
lagh Size » 0x100000, SRAM Stze = 0x60000
atoh = Gx0

version 1 installed at 0x0
Intol Valid

State activeldx+0 otaDesc = Oxfftefret
Iund:uumvdm‘ SN

to Va . nagen
‘g sabl

da od
alid Main image in flesk SP=0x10001000 RV«Oxe%c9
alidation Status Ox0

ill transfer to Nein®0xc000

ing to lock all sscurity gates

Devces AMAIBICKER [CPUFreq 801171z SWOFreq: 1000 ks | 7060 bytes

Page 10 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

4.4.2 Program INFOO through JLink Commander

Ambiq SDK provides a windows batch file “program_info0.bat” which use the JLink Commander scripting
language to program INFOO. The script needs to edit the file for the location of info0.bin.

After that, run this from windows command line as follows.

For Apollo3Blue:

./program_info0.bat AMA3BI1KK-KBR
or

./program_info0.bat AMA3BI1KK-KCR

For Apollo3BluePlus:

./program_info0.bat AMA3B2KK-KBR
or

./program info0.bat AMA3B2KK-KCR

Itis important to note that when using this method - there is no built in error checking. Users need to
independently verify that programming was successful (e.g. by reading the infospace back and then
comparing with expected values).

Top half of INFOO (0x1000-0x1FFF) is read protected. Reading back complete INFOO requires special handling to
unlock top half meant for security information like keys etc, or any other sensitive information customer may want
to keep. Access to this area is restricted.

If one does not care about this region, just reading back the first 0x1000 bytes and comparing is enough.
If verifying complete INFOO is needed, special procedure is defined for accessing the protected half of INFOO.

4421 Special Handling required for reading back INFOO

Top half of INFOO (offset 0x1000 onwards) is meant for security information like keys etc, or any other sensitive
information customer may want to keep.

Access to this area is restricted.

To unlock reading of this region, unique 128b "customer key" needs to be written to the lock registers.

Customer Key is whatever value customer programmed in INFOO as part of initial programming
(INFOO_CUSTOMER_KEYO0 ADDRESS: 0x50021A00 to INFOO_CUSTOMER_KEY3 ADDRESS: 0x50021A0C).
This way it is known only to the customer.

The following needs to be done for unlocking this region of INFOO:
e Write Ox1 to REG_SECURITY_LOCKCTRL ADDRESS: 0x40030078
e Write the key value to REG_SECURITY_KEYO ADDRESS: 0x40030080 to REG_SECURITY_KEY3
ADDRESS: 0x4003008C
One can confirm that the region is unlocked by checking REG_SECURITY_LOCKSTAT ADDRESS: 0x4003007C
(should be 0x1)

Once the need for access is done, the same procedure can be repeated, but this time with some wrong value to
the key registers to lock the access.

Ambig SDK also provides a windows batch file “verify_infoO.bat” which use the JLink Commander scripting
language to extract the current INFOO contents to a file called infoO_dump.bin, compare it to info0.bin and state
the result of the comparison. Note that the customer keys are set to the default in this script. Edit the customer
keys in order to unlock INFOO access.

Page 11 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

To run this from windows command line as follows:

For Apollo3Blue:

./verify info0O.bat AMA3B1KK-KBR
or

./verify info0O.bat AMA3B1KK-KCR

For Apollo3BluePlus:

./verify info0O.bat AMA3B2KK-KBR
or

./verify info0O.bat AMA3B2KK-KCR

5. Firmware image for non-secure Boot
An IDE like IAR could be used to both generate and flash the images to Apollo3-Blue for debugging.

Alternatively, the images can be generated using an IDE, and then flashed using other means (e.g. JFlashLite, or
through SBL wired update). The IDE can then be used to attach to a running target for debugging.

5.1 Using the IAR IDE with Secure Bootloader

At this point (and hereafter) it is possible to use the IAR IDE to load and program. The Apollo3-SDK release includes
modifications to the build system to instantiate the JLink script changes for the IAR and Keil IDEs. In addition, all
of the examples have been updated to relocate the Flash base address to 0xC00O.

Build the hello_world example and try loading it through the IAR debugger. The Debug Log should look like this:

Tue Jan 29, 2019 12:09:12: IAR Embedded Workbench 8.32.2 (C:\Program Files (x86)\IAR
Systems\Embedded Workbench 8.2\arm\bin\armproc.dll)

Tue Jan 29, 2019 12:09:12: Loaded macro file: C:\Program Files (x86) \IAR
Systems\Embedded Workbench 8.2\arm\config\debugger\AmbigMicro\apollo3.dmac

Tue Jan 29, 2019 12:09:12: Device "AMA3BI1KK-KBR" selected.

Tue Jan 29, 2019 12:09:12: JLINK command: ProjectFile = C:\AmbigMicro\AmbigSuite-
Rel2.0.0\boards\apollo3 evb\examples\hello world\iar\settings\hello world Debug.jli
nk, return = 0

Tue Jan 29, 2019 12:09:12: JLINK command: scriptfile = C:\Program Files (x86)\IAR
Systems\Embedded Workbench 8.2\arm\config\debugger\AmbigMicro\AMA3B1KK-
KBR.JLinkScript, return = 0

Tue Jan 29, 2019 12:09:12: Device "AMA3B1KK-KBR" selected.

Tue Jan 29, 2019 12:09:12: DLL version: V6.40 , compiled Oct 26 2018 15:06:02

Tue Jan 29, 2019 12:09:12: Firmware: J-Link OB-SAM3U128 V3 compiled Jul 12 2018
12:17:50

Tue Jan 29, 2019 12:09:12: Selecting SWD as current target interface.

Tue Jan 29, 2019 12:09:12: JTAG speed is initially set to: 1000 kHz

Tue Jan 29, 2019 12:09:12: Found SW-DP with ID 0x2BA01477

Tue Jan 29, 2019 12:09:12: Scanning AP map to find all available APs

Tue Jan 29, 2019 12:09:12: AP[1l]: Stopped AP scan as end of AP map has been reached
Tue Jan 29, 2019 12:09:12: AP[0]: AHB-AP (IDR: 0x24770011)

Tue Jan 29, 2019 12:09:12: Iterating through AP map to find AHB-AP to use

Tue Jan 29, 2019 12:09:12: AP[0]: Core found

Tue Jan 29, 2019 12:09:12: AP[0]: AHB-AP ROM base: O0xXEOOFFO000

Tue Jan 29, 2019 12:09:12: CPUID register: 0x410FC241. Implementer code: 0x41l (ARM)
Tue Jan 29, 2019 12:09:12: Found Cortex-M4 rOpl, Little endian.

Tue Jan 29, 2019 12:09:12: FPUnit: 6 code (BP) slots and 2 literal slots

Tue Jan 29, 2019 12:09:12: CoreSight components:

Page 12 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

Tue Jan 29, 2019 12:09:12: ROMTb1l[0] @ EOOFF000

Tue Jan 29, 2019 12:09:12: ROMTb1[0][0]: EOOOEOOO, CID: B105E00D, PID: 000BBOOC SCS-
M7

Tue Jan 29, 2019 12:09:12: ROMTbl

[0] E0001000, CID: BL1OS5S5EOQ0D, PID: 0O03BB002 DWT
Tue Jan 29, 2019 12:09:12: ROMTb1l[O0]
[0]

[1]:

[2]: E0002000, CID: B10O5EO0OD, PID: 002BB0O03 FPB
Tue Jan 29, 2019 12:09:12: ROMTbl [3]: EO000000, CID: B10O5EOOD, PID: 003BB0O01 ITM
Tue Jan 29, 2019 12:09:12: ROMTb1l[0][4]: E0040000, CID: B105900D, PID: 0O0OOBBY9A1l TPIU
Tue Jan 29, 2019 12:09:12: Executing J-Link script file function: ResetTarget ()
Tue Jan 29, 2019 12:09:12: JDEC PID 0x000000CF
Tue Jan 29, 2019 12:09:12: Ambig Apollo3 ResetTarget
Tue Jan 29, 2019 12:09:12: Bootldr = 0x04000000
Tue Jan 29, 2019 12:09:12: Secure Part.
Tue Jan 29, 2019 12:09:12: Secure Chip. Bootloader needs to run which will then halt
when finish.
Tue Jan 29, 2019 12:09:12: CPU halted after reset. Num Tries = 0x00000000
Tue Jan 29, 2019 12:09:12: Hardware reset with strategy 0 was performed
Tue Jan 29, 2019 12:09:12: Initial reset was performed
Tue Jan 29, 2019 12:09:12: 512 bytes downloaded (6.41 Kbytes/sec)
Tue Jan 29, 2019 12:09:12: Loaded debugee: C:\Program Files (x86)\IAR Systems\Embedded
Workbench 8.2\arm\config\flashloader\AmbigMicro\FlashApollo3 RAM256K.out
Tue Jan 29, 2019 12:09:12: Target reset
Tue Jan 29, 2019 12:09:13: Downloaded C:\AmbigMicro\AmbigSuite-
Rel2.0.0\boards\apollo3 evb\examples\hello world\iar\bin\hello world.out to flash
memory.
Tue Jan 29, 2019 12:09:13: 8598 bytes downloaded into FLASH (8.26 Kbytes/sec)
Tue Jan 29, 2019 12:09:13: Executing J-Link script file function: ResetTarget ()
Tue Jan 29, 2019 12:09:13: JDEC PID 0x000000CF
Tue Jan 29, 2019 12:09:13: Ambig Apollo3 ResetTarget
Tue Jan 29, 2019 12:09:13: Bootldr = 0x04000000
Tue Jan 29, 2019 12:09:13: Secure Part.
Tue Jan 29, 2019 12:09:13: Secure Chip. Bootloader needs to run which will then halt
when finish.
Tue Jan 29, 2019 12:09:13: CPU halted after reset. Num Tries = 0x00000000
Tue Jan 29, 2019 12:09:13: Hardware reset with strategy 0 was performed
Tue Jan 29, 2019 12:09:13: 8598 bytes downloaded into FLASH (16.79 Kbytes/sec)
Tue Jan 29, 2019 12:09:13: Loaded debugee: C:\AmbigMicro\AmbigSuite-
Rel2.0.0\boards\apollo3 evbl\examples\hello world\iar\bin\hello world.out
Tue Jan 29, 2019 12:09:13: Executing J-Link script file function: ResetTarget ()
Tue Jan 29, 2019 12:09:13: JDEC PID 0x000000CF
Tue Jan 29, 2019 12:09:13: Ambig Apollo3 ResetTarget
Tue Jan 29, 2019 12:09:13: Bootldr = 0x04000000
Tue Jan 29, 2019 12:09:13: Secure Part.
Tue Jan 29, 2019 12:09:13: Secure Chip. Bootloader needs to run which will then halt
when finish.
Tue Jan 29, 2019 12:09:13: CPU halted after reset. Num Tries = 0x00000000
Tue Jan 29, 2019 12:09:13: Hardware reset with strategy 0 was performed
Tue Jan 29, 2019 12:09:13: Target reset

5.2 Programming the device using SBL assisted Wired update

This option requires reformatting the image generated by an IDE to an update format as understood by the SBL,
and then using the Wired Update method to let SBL update the image.

5.2.1 Generating Main Customer Image Upgrade Blob

This example demonstrates how to create a customer main image Upgrade blob, which can then be used for
upgrading the main image in flash, either using the OTA or wired update process.

Page 13 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

Create a non-secure customer image from a built binary with Flash base address of 0xC000. This is the
Customer Main Non-Secure format from the Apollo3 Security Whitepaper.

./create cust image blob.py --bin hello world.bin --load-address 0xC000 --magic-
num O0xCB -o main nonsecure ota --version 0x0

The generated image blob (main_nonsecure_ota.bin) can then be used to upgrade the program in the flash using
the wired update (section 5.2.2).

5.2.2 Wired Update Example — Main Customer Image

5.2.2.1 UART Wired Update

This example demonstrates how to create and load a customer main image using the Secure Bootloader Wired
Update protocol. In this example, INFOO has been configured as outlined in section 4.1 above.

6. Create Non-Secure Wired Update Image blob corresponding to the Upgrade image, as shown in the
Apollo3-Blue Secure Update Flow document:

./create cust wireupdate blob.py --load-address 0x20000 --bin
main nonsecure ota.bin -i 6 -o main nonsecure wire --options 0xl

7. Hold BTN2 on the Apollo3 EVB while pressing SYSTEM RESET, you should see:

B SEGGER 3-Link SWO Viewer VE.3dg -
File Edt Help

K1) 4 2 15 15 WO S e 0
Data hos sesbusporte} 11T e Trrrerr T rTrrrrrr e rrrrrTrTre

[~ Stwoniop Cear | Stop | Pouse }
(

Anbig Secure Bootloader|

SecureBoot ID | running with VIOR # 0x100 Infol-ssign[0] » OxdBeandff Infol-rsign|[0]~OxecaSiied
Current Reset Stat Oxl

Intcl Version Oxl

Infol Version Ox0

Flash Size » Ox100000. SRAM Size = Ox60000

Scratch = 0Ox0

SEL version 1 installed at 0Ox0

Infol Valid

OTA State. sctiveldx=l otaDesc = Dxffffefee

Initislizetion done

Force GPID Override
Atteapting Vired update
Initislizins UART

Usiting for bhost on UART

[Device: AMAIBTKX-KER CPUFreq 48113 kb SWOFreq: 1000 kiz (131 bytes

Page 14 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

8. Within 5 seconds, use the UART Wired Update script to transfer the Non-Secure Wired Update image
blob to the Secure Bootloader?:

/uart wired update.py -b 115200 COM<X> -r 1 -f main nonsecure wire.bin -i 6

where COM<X> is the PC COM port connected to the Apollo3 EVB.

1 The default command assumes last page of available flash to construct the OTA descriptor page, as
required by the Upgrade process, as described in [REF1]. For non-default allocation of the OTA descriptor

page, it can be specified using —o parameter.

©2019 Ambiq Micro, Inc.

Page 15 of 25
All rights reserved.

9. Reset the board (without holding BTN2) and you should see:

[BA SEGGER - Link SWO Viewer V

Hle Eds MHelp

)
Data o b ported [1

~ Sy on oo

Hello Vorld!

Vendor Name ANBD
ype _.‘-p:-llc'.

- OxA000000

SRCAIOR . 0x20000

Qualified No

Device Info
Part nunber
Chip IDO
Chap ID1
Revision
Flash size
SRAN size

App Conpiler
Coapl ler
HAL SDK versiom: 2.0
HAL compiled with CMES
SBL ver Oxl - Ox0. 1

f

|Device: AMAIB1KX-KER

5.2.2.2

6.34g

Ox06671298
Ox171F31CA
OxFEOO00UA
Ox000ECF12 (RevAl)
3040576 (1024 KB)
393216 (384 ¥B}

iS-style registers
NF00 valid. ver Ox0

IOS (SPI) Wired Update

CoCes Compiler V¥

oo

C4s Compiler ¥

CPlreq &111) e

PWOF req 1000 kMz

1866} bytes

This example demonstrates how to create and load a customer main image using the Secure Bootloader Wired
Update protocol. In this example, INFOO has been configured as outlined in section O or O above. In addition,
this section assumes that the Apollo3 EVB has been upgraded to SBL-v3 as outlined in section 7 below. Finally,
this example assumes that a Host Apollo3 EVB is programmed with the uart_boot_host example and connected

as shown in section 3.2.2 above.

1. Create Non-Secure Wired Update Image blob corresponding to the Upgrade image, as shown in the
Apollo3-Blue Secure Update Flow document:

./create cust wireupdate blob.py --load-address 0x20000 --bin
main nonsecure ota.bin -i 6 -o main nonsecure wire --options 0xl

2. Pressthe SYSTEM RESET button on the Host Apollo3 EVB, you should see:

Page 16 of 25

©2019 Ambiq Micro, Inc.
All rights reserved.

X

A SEGGER J-Link SWO Viewer V6.34q
File Edit Help

st Bt B B A
Data from potist T CrrrrrT rrrrrer rrrrrrr
[~ Stayontop ey | Stop | Pawse |

~

Anbig Secure BootLoader!

SecureBoot SBL_v3 ver 0x4(0x9%9628) running with YTOR @ 0x100
Current Reset Stat 0x1

Infol Version 0Ox1

Infol Version 0x0

ChaplID = 0x171ffcdd: 0xfe00000a

Flash Size = 0x100000, SRAM Size = 0x60000
Scratch = 0x0

INFO1-Sec = 0x72523f¢

SHL version 0x4 installed at O0x0

Previous Boot wvas Successful 31

INFOO-Sec = OxS5Sfff

Infol Valid

OTA State: activeldx+18 otaDesc « Oxfe00
Initialization done

Force GPIO Override

Attempting Wired update

Initislizing I0OS

Vaiting for host on I0S

Received Hello Responding vith Status

IDevkz AMA3BIKK-KBR CPUFreq: 48278 Iz SWOFreq: 1000 kHz 1854 bytes

Notice that the uart_boot_host program immediately and autonomously sends a HELLO message and
receives a STATUS message in order to capture the interface. Itis now ready to accept UART-to-SPI traffic
via the python scripts.

3. Use the UART Wired Update script to transfer the Non-Secure Wired Update image blob to the Secure
Bootloader:

./uart_wired update.py -b 115200 COM<X> -r 1 -f main nonsecure wire.bin -i 6

where COM<X> is the PC COM port connected to the Host Apollo3 EVB. You should see:

Page 17 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

SEGGER J-Link SWO Viewer V6.34g - X
| Ele Edit Help

Data from stmks poriel. LT T F P Prerrrre frerrrre
I~ Stay on top _Qex | Stop | Pause |

~

Anbigq Secure Bootloader!

SecureBoot v3 ver 0x4(0x9628) running with VTOR @ 0x100
Current Reset Stat 0Oxl

Infol Version Ox1

Info0 Version 0x0 :
ChipID = 0x171ffcdd; Oxfe00000a [
Flash Size = 0x100000. SRAM Size = 0x60000

Scratch = 0x0

INFO1-Sec = Ox72523ff

SBEL version Ox4 installed at Ox0

Previous Boot wvas UnSuccessful 32

INFOO-Sec = OxSS5fff

Infol Valid

{OTA State: activeldx=18 otaDesc = Oxfe000
Initialization done

Force GPIO Override

Attenpting Vired update

Initializang I0S

Vaiting for host on I0S

Received Hello = Responding vith Status

Received Hello Responding wvith Status

Received OTADESC Oxfe000

Sending ACK for OTADESC

Received UPDATE

Sending ACK for UPDATE

Received DATA

Recsived DATA

Uriting the Update blob to Flash 0x235c bytes @ 0x20000
Received RESET

Done with I0S host

Device: AMA3B1KK-KBR (CPUFreq: 48278 kiHz |SWOFreq: 1000 kHz 5195 bytes

Page 18 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

KA SEGGER J-link SWO Viewer V6.34g - X
| Eile Edit Help

Daka rom sinuus pots} T Pt Crrrrrre frrrrrre
I~ Stay onlop _Qlear | Stop | Pause |
~

Anbig Secure BootLoader!

SecureBoot SBL_v3 ver Ox4{0x9628) running wvith VTOR @ 0x100
Current Reset Stat 0x10

Infol Version Oxl

Info0 Version Ox0

ChiplID = 0x171ffcdd:0xfel0000a

Flash Size = 0x100000. SRAM Size = 0x60000
Scratch = 0x0

INFO1-Sec = 0x72523ff

SBL version Oxd4 installed at 0Ox0
Previous Boot was UnSuccessful: 32
INFOO-Sec = OxSSEff

Infol Valad

OTA State. activeldx=18 otaDesc = Oxfe000
Initialization done

Force GPIO Override

Attenpting Wired update

Initializing I0S

Vaiting for host on IOS

Done with I0S host

Out of Wired update

Proceeding to lock all security gates

Device: AMA3BTKK-KBR (CPUFreq: 48278 kHz |SWOFreqr 1000 kHz |3195 bytes

4. Connect pin 16 on the Slave to VDD and press the SYSTEM RESET button, you should see:

Page 19 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

B8 SEGGER J-Link SWO Viewer V6.34g -

File Edit Help

< NSRRI Rin iy < Wt 7 + X TR e .}
Data from shmubus poet(s) [] Frrrro rrrrrrr rrrrrrrr rrirrrre

I Stay ontop Uoat | Stop | Pause |

;Hello Vorld!

{Vendor Name: AMBO

{Device type: Apollod

{Debugger: 0Ox0

{Boot loader . 0x4000000

ISCRATCHO ; 0x0

{SCRATCH1: Ox0

{ISRCADDR: Ox0

{Qualified. No

{Device Info

| Part number: 0x06671298

Chip IDO Ox171FFCDD

Chip ID1 0xFEOD000A

Revision Ox000ECF12 (Reval)

Flash size 1048576 (1024 KB)

SRAM size 393216 (384 KB)
iApp Compiler IAR ANSI C/C++ Compiler V8 .32 .2 178/¥32 for ARM
|HAL Compiler IAR ANSI C/C4+ Compiler VB .32 .2 178/W32 for ARM

{HAL SDK version: 2.0.1
|HAL compiled with CMSIS~-style registers
ISBL ver: Ox4 - 0x9628. INFOO valid. ver Ox0

i[}ewcc. AMA3B1KK-KBR CPUFrequ 48278 kiHz |SWOFreq: 1000 kiHz 6568 bytes

5.3 Programming Images with JFlashLite

Programming images with JFlashLite is similar to the behavior without the Secure Bootloader, but it is important to
note the differences. Valid images should be located and downloaded at 0xC000. If there is no valid image, when
JFlashLite attaches to the Apollo3 it will be at a stage after the SBL has run and it waiting in an infinite loop. Once
the flashing operation is complete, JFlashLite with resume the program, but it will still be inside the infinite loop.
Pressing a reset will bring the Apollo3 through a normal boot operation which will begin execution of the image at
0xC000.

“Erase Chip” operation will not work from JFlashLite, as the pre-installed Secure Bootloader is protected, and cannot
be erased. Equivalent effect could be achieved by programming all 1’s to the desired sectors of the flash.

5.4 Programming Images with JFlash

Programming images with JFlash is similar to the behavior without the Secure Bootloader, but it is important to note
the differences. Valid images should be located and downloaded at 0xC000. If there is no valid image, when
JFlash attaches to the Apollo3 it will be at a stage after the SBL has run and it waiting in an infinite loop. Once the
flashing operation is complete, JFlash with resume the program, but it will still be inside the infinite loop. Pressing
a reset will bring the Apollo3 through a normal boot operation which will begin execution of the image at 0xC000.
SEGGER Tools V6.34 and beyond are aware of the SBL Flash configuration for Apollo3-Blue, so the tool can be
used as normal.

Page 20 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

6. Secure Boot

For Apollo3-Blue Secure SKU’s customers can optionally enable secure boot. When enabled for Secure Boot, SBL
transfers control to the main image only after it passes required validation checks.

Secure Boot is enabled by programming INFOO SECURITY settings as per customers’ requirements, giving
flexibility on the level of enforcement of security policies. Please refer to [REF3] for more details.

This section briefly lists essential steps for getting started with secure boot, and highlights differences with non-
secure parts. Working with secure images is inherently more involved and not as debug friendly. Hence, it is
expected that most of the development work is done using non-secure settings, and once the program has been
validated, security is enabled as one of final steps.

6.1 Enabling Secure Boot in INFOO

As mentioned above, secure boot is enabled by setting the INFOO security settings. Procedure for generating and
programming the INFOO is same as listed in section 4, except for a small difference in INFOO generation to
enable secure boot.

e Create INFOO image with GPIO Override is set to pin 16 (0x10) active low. Baudrate for INFOO UART is
set to 115200 (0x1C200). Main image is expected at 0xC000. Apollo3 is configured for UART-RX pin 23
(0x17) & UART-TX pin 22 (0x16). Secure Boot is enabled (note the —s option).

./create info0.py --valid 1 info0 --pl 1 --u0 0x1C200c0 --ul OxFFFF1617 --u2 0x2
--u3 0x0 --u4 0x0 --u5 0x0 --main 0xC000 --gpio 0x10 --version 0 --wTO 5000 -s 1
--chipType apollo3

e Create INFOO image with GPIO Override is set to pin 16 (0x10) active low. Baudrate for INFOO UART is
set to 115200 (0x1C200). Main image is expected at 0xC000. Apollo3 is configured for UART-RX pin 23
(0x17) & UART-TX pin 22 (0x16). Secure Boot is enabled (note the —s option).

./create info0.py --valid 1 info0 --pl 1 --u0 0x1C200c0 --ul OxFFFF1617 --u2 0x2
--u3 0x0 --u4 0x0 --u5 0x0 --main 0xCO000 --gpio 0x10 --version 0 --wTO 5000 -s 1
--chipType apollo3p

6.2 Firmware image for Secure Boot

For secure boot, the images are reformatted with additional security header information for SBL to use for
verification.

Provisioning secure parts is a multi-step process to program permanent images when using secure boot.
e The images can first be generated using an IDE

o The link address needs to be set to a value 0x100 more than the mainPtr configured in INFOO, to
allow for required security headers (e.g. when using default 0xC000 as the main image location,
one should link the program at OxC100)

e Images are reformatted for SBL to understand
o This step creates the required security headers

e Reformatted image is then flashed using other means (e.g. JFlashLite, or through SBL wired update) at
flash address specified by mainPtr in INFOO (e.g. 0xC000).

e The IDE can then be used to attach to a running target for debugging.

Note that IDEs can still be used as a one-step shop for generating, programming and debugging the programs (as
in section 5.1). However, on reset the Secure Boot will fail due to lack of compatible security information for SBL.

Page 21 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

7. Secure Bootloader Update

From time to time, Ambiqg will provide updates to the preinstalled Secure Bootloader (SBL). These updates are
provided as binary files.

Customers have a choice to perform the SBL upgrade either using their OTA protocol, or use the SBL provided
wired update protocol.

When using either method for SBL upgrade, there are certain restrictions to keep in mind:

1. It needs to be ensured that SBL OTA is provided exclusively (SBL upgrade cannot be bundled with other
images during OTA process).

2. SBL can be upgraded only if the device is booting successfully otherwise. A successful boot means SBL
booting to a valid main firmware image (secure or non-secure).

e This means that SBL cannot be upgraded on a vanilla factory part with no main image. A test main
image needs to be installed first, before SBL can be upgraded.

When using wired update method, following steps can be followed:

7.1 Create Secure Bootloader (SBL) Wired Update Image blob
Create SBL Wired Update Image blob corresponding to the Upgrade image (sbl.bin provided by Ambiq):

./create cust wireupdate blob.py --load-address 0xF0000 --bin ./sbl updates/<SBL
Binary file provided by Ambig> -i 0 -o sbl wire --options 0xl

Page 22 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

7.2 Program SBL Upgrade Firmware

To use the UART Wired Update script to upgrade SBL Firmware using the SBL wire update blob (generated as in
section 7.1):

1. Hold BTN2 on the Apollo3 EVB while pressing SYSTEM RESET, you should see:

H SEGGER HUnk SWO Viewer VG 34q —

File Edit Help
N 24 2 15 15 8 17 0
Data hos stesubus porte] | --f-f_l"f-F' F‘r‘r“"”"_' Frrrrrrri FrTrTrrrrey
[Sty onop gha Stop Pause

Anbig Secure Bootloader!

SecureBoot ID 1 running with VIOR # 0x100 Infol->zign[0] » OxdBeaadBf Infol-rsign|[0]~OxecaSnied
Current Feset Stat Oxl

Intcl Version Ox1

Infol Version Ox0

Flash Size » Ox100000. SRAN Size = Ox60000
Scratch = Ox0

SBEL version 1 installed at Ox0

Infol Valid

OTA State sctiveldx=l oteDesc = Oxffffefds
Initislizetion done

Force GPID Override

Atteapting Vired update

Initislizins UART

Usiting for bost on UART

iDa--ce AMAIBTKK-KER CPUFreqy 40113 khz 'SWOFreq: 1000 iz 1319 bytes

2. Within 5 seconds, use the UART Wired Update script to transfer the Non-Secure Wired Update image
blob to the Secure Bootloader:

./uart_wired update.py -b 115200 COM<X> -r 1 -f sbl wire.bin -i 0

Page 23 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

3. Reset the board (without holding BTN2) and you should see:

Eile Edit Help

Dt bom srmikn perisl P rrrrrt

" Slay an b

Anb1g Secure Bootloader!

SecurebBoot SEL_%3 wer Ox4{0x9628) runsing vith VTOR @ Ox100S£{00

Current Resst Stat 0x0

{Infol Versioce Oxl

Infol Yersice 0x0

KhaplD = 0x171§S263 Oxfe00000s

{Flash Sige = 0100000 SRAM Saze = (0x80000

“Scratch = Ox0

LINFOL-Soc = Ox?2623¢4

SBL sersiom Ox3 installed at Ox0

{Frevious Boot vas UnSuccesstul: 24

{IBFCO-Soc » OxESL1t

Isfof YValia

JOTA State activeldusS olaDesc » (xtedD0

jRunning SEL OTA Ignoring the fact that we're in siddle of OTA - ax it is sxpected
{Initaalization don

OTA Avaslable @ Oxfe00D

[Found S8L OTA

“S8L OTA Found entry for seli. Oxi0000

OTA Status = (xs

OTA Status Oxal

Proceading to Yalidate the Isages

SecureBoot disabled =
Valid Main imasge i flash SP+0x10001000, RV»DxeScS

(Validation Status Ox0

‘Funning Alternate SEL Imsge Verzice Ox4 From OxE0000 of xize 0x9020 bytes - Proceeding
iPunning SEL OTA - Vill procwed with Self Erase before transferring to Nais®Oxc000
iFroceedsng to lock all security gatsw

[Pevics AMASBIRK-FER

CFUFreg: 6026 kiz SHOFreg 1000 kiz 25456 bytem

7.3 Program SBL Upgrade Firmware through JLink Commander

The SBL may also be programmed via the following script:
/tools/apollo3 scripts/jlink-prog-sbl.txt

The script may be modified based on the flash addressing of Apollo3Blue vs. Apollo3BluePlus and the customer’s
requirements. The default loads the SBL image to 0x80000 and the OTA Descriptor to 0xFO000 which will work
for both Apollo3Blue EVB and the Apollo3BluePlus EVB. The device must be specified on the command line as

follows:

For Apollo3Blue:

JLink.exe -device AMA3B1KK-KBR -CommanderScript jlink-prog-sbl.txt
For Apollo3BluePlus:

JLink.exe -device AMA3B2KK-KBR -CommanderScript jlink-prog-sbl.txt
Contact Information

Address Ambiq Micro, Inc.
6500 River Place Blvd.
Building 7, Suite 200
Austin, TX 78730

Phone +1 (512) 879-2850

Page 24 of 25

©2019 Ambiq Micro, Inc.
All rights reserved.

Website http://www.ambigmicro.com
General Information info@ambigmicro.com
Sales sales@ambigmicro.com
Technical Support support@ambigmicro.com

Legal Information and Disclaimers

AMBIQ MICRO INTENDS FOR THE CONTENT CONTAINED IN THE DOCUMENT TO BE ACCURATE AND RELIABLE. THIS CONTENT
MAY, HOWEVER, CONTAIN TECHNICAL INACCURACIES, TYPOGRAPHICAL ERRORS OR OTHER MISTAKES. AMBIQ MICRO MAY
MAKE CORRECTIONS OR OTHER CHANGES TO THIS CONTENT AT ANY TIME. AMBIQ MICRO AND ITS SUPPLIERS RESERVE THE
RIGHT TO MAKE CORRECTIONS, MODIFICATIONS, ENHANCEMENTS, IMPROVEMENTS AND OTHER CHANGES TO ITS PRODUCTS,
PROGRAMS AND SERVICES AT ANY TIME OR TO DISCONTINUE ANY PRODUCTS, PROGRAMS, OR SERVICES WITHOUT NOTICE.

THE CONTENT IN THIS DOCUMENT IS PROVIDED "AS IS". AMBIQ MICRO AND ITS RESPECTIVE SUPPLIERS MAKE NO
REPRESENTATIONS ABOUT THE SUITABILITY OF THIS CONTENT FOR ANY PURPOSE AND DISCLAIM ALL WARRANTIES AND
CONDITIONS WITH REGARD TO THIS CONTENT, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED WARRANTIES AND CONDITIONS
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT OF ANY THIRD PARTY
INTELLECTUAL PROPERTY RIGHT.

AMBIQ MICRO DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED UNDER ANY
PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT OF AMBIQ MICRO COVERING OR
RELATING TO THIS CONTENT OR ANY COMBINATION, MACHINE, OR PROCESS TO WHICH THIS CONTENT RELATE OR WITH WHICH
THIS CONTENT MAY BE USED.

USE OF THE INFORMATION IN THIS DOCUMENT MAY REQUIRE A LICENSE FROM A THIRD PARTY UNDER THE PATENTS OR OTHER
INTELLECTUAL PROPERTY OF THAT THIRD PARTY, OR A LICENSE FROM AMBIQ MICRO UNDER THE PATENTS OR OTHER
INTELLECTUAL PROPERTY OF AMBIQ MICRO.

INFORMATION IN THIS DOCUMENT IS PROVIDED SOLELY TO ENABLE SYSTEM AND SOFTWARE IMPLEMENTERS TO USE AMBIQ
MICRO PRODUCTS. THERE ARE NO EXPRESS OR IMPLIED COPYRIGHT LICENSES GRANTED HEREUNDER TO DESIGN OR
FABRICATE ANY INTEGRATED CIRCUITS OR INTEGRATED CIRCUITS BASED ON THE INFORMATION IN THIS DOCUMENT. AMBIQ
MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN. AMBIQ MICRO MAKES
NO WARRANTY, REPRESENTATION OR GUARANTEE REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR
PURPOSE, NOR DOES AMBIQ MICRO ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR
CIRCUIT, AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY, INCLUDING WITHOUT LIMITATION CONSEQUENTIAL OR
INCIDENTAL DAMAGES. “TYPICAL” PARAMETERS WHICH MAY BE PROVIDED IN AMBIQ MICRO DATA SHEETS AND/OR
SPECIFICATIONS CAN AND DO VARY IN DIFFERENT APPLICATIONS AND ACTUAL PERFORMANCE MAY VARY OVER TIME. ALL
OPERATING PARAMETERS, INCLUDING “TYPICALS” MUST BE VALIDATED FOR EACH CUSTOMER APPLICATION BY CUSTOMER’S
TECHNICAL EXPERTS. AMBIQ MICRO DOES NOT CONVEY ANY LICENSE UNDER NEITHER ITS PATENT RIGHTS NOR THE RIGHTS
OF OTHERS. AMBIQ MICRO PRODUCTS ARE NOT DESIGNED, INTENDED, OR AUTHORIZED FOR USE AS COMPONENTS IN SYSTEMS
INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR OTHER APPLICATIONS INTENDED TO SUPPORT OR SUSTAIN LIFE, OR
FOR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE AMBIQ MICRO PRODUCT COULD CREATE A SITUATION WHERE
PERSONAL INJURY OR DEATH MAY OCCUR. SHOULD BUYER PURCHASE OR USE AMBIQ MICRO PRODUCTS FOR ANY SUCH
UNINTENDED OR UNAUTHORIZED APPLICATION, BUYER SHALL INDEMNIFY AND HOLD AMBIQ MICRO AND ITS OFFICERS,
EMPLOYEES, SUBSIDIARIES, AFFILIATES, AND DISTRIBUTORS HARMLESS AGAINST ALL CLAIMS, COSTS, DAMAGES, AND
EXPENSES, AND REASONABLE ATTORNEY FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PERSONAL INJURY
OR DEATH ASSOCIATED WITH SUCH UNINTENDED OR UNAUTHORIZED USE, EVEN IF SUCH CLAIM ALLEGES THAT AMBIQ MICRO
WAS NEGLIGENT REGARDING THE DESIGN OR MANUFACTURE OF THE PART.

Page 25 of 25 ©2019 Ambiq Micro, Inc.
All rights reserved.

http://www.ambiqmicro.com/
mailto:info@ambiqmicro.com
mailto:sales@ambiqmicro.com
mailto:support@ambiqmicro.com

