

White Paper

I2C/SPIBOOTLOADERS

I2C/SPI BOOT LOADERS

bootloader Copyright 2016, Ambiq Micro Inc. 1

1. Introduction

This document describes the protocol used on a SPI or I2C bus that connects the Apollo (sensor hub), as a bus
slave, to an Application Processor (host), acting as the bus master when used with an OTA boot loader. Apollo is
supported by both a secure and a non-secure bootloader supporting the Apollo I/O Slave. This document
describes the protocol with respect to the ios_boot example in the apollo_evk_base/examples directory. This is
the non-secure bootloader. Everything described here also applies to the secure bootloader.

The ios_boot bootloader can run in either an I2C mode or SPI mode. The choice is made at compile time. The
initial description of the boot loader protocol will focus on the SPI protocol. The I2C protocol will be discussed later
in t the document.

The SPI interface to the slave hardware in the Apollo MCU gives the host access to 128 registers that are shared
between the host and the sensor hub. The host writes commands in to the shared registers and can read
responses from the shared registers.

The first 120 bytes of the shared register space are simply shared storage while the final 8 registers implement an
interrupt controller for the host’s use. This interrupt controller can enable from 0 to 8 interrupt status bits to drive
GPIO pin 4 high when an interrupt is asserted. 6 of the interrupt status bits are purely software interrupts which
are set by the Apollo MCU to assert a GPIO interrupt. The interrupt enable register can on only be set or cleared
from the host. Similarly, the interrupt status bits are cleared by SPI transactions from the host’s SPI master, see
Figure 1 Host View of 128 Byte Shared Register Space.

The host can write to one or more of the shared register bytes by using a SPI write transaction such as the one
sketched in Figure 2 SPI Write Transaction from Host to Shared Registers. Notice that the first byte transmitted
on the MOSI pin after the Chip Select has gone low is an addressing byte (offset byte) that contains both the
direction for the rest of the transaction, (read or write), and a 7 bit offset value. The offset value tells the SPI slave
on Apollo which byte is to be over-written by the first write data byte following the offset byte. A write transaction
can write from one to 128 bytes. For the purposes of this protocol, the offset value used to actually write bytes to
shared registers is automatically incremented after each byte is written. Thus one can write an entire 48 byte
command to the Apollo sensor hub in a single SPI transaction. Note that the chip select line must remain low
between the offset byte and all subsequent data bytes in the same transaction.

White Paper

I2C/SPIBOOTLOADERS

I2C/SPI BOOT LOADERS

bootloader Copyright 2016, Ambiq Micro Inc. 2

Figure 1 Host View of 128 Byte Shared Register Space

0x77

120 BYTES OF
SHARED

REGISTERS

4 BYTES of FIFO
CONTROL
REGISTERS
(unused)

Int. Enable

Int. Status

Clear Int. Status

Set Int. Status

8-bits

128
Register

Bytes

0x78

0x79

0x7A

0x00

0x7F

0x7C

0x7B

OFFSET[6:0]

W
R

T=
1

R
D

=0

8-bit Write,Offset

White Paper

I2C/SPIBOOTLOADERS

I2C/SPI BOOT LOADERS

bootloader Copyright 2016, Ambiq Micro Inc. 3

Figure 2 SPI Write Transaction from Host to Shared Registers

NOTE: every time the chip select pin goes from high to low then the state machine in the Apollo slave assumes
the next byte written over the SPI bus MOSI pin will be an offset byte.

In a similar way, a read transaction allows for from 1 to 128 bytes to be read from the Apollo I/O slave in a single
SPI bus transaction as shown in Figure 3 SPI Read Transaction.

Figure 3 SPI Read Transaction

SPICLK

SPIMOSI

SPIMOSI

SPICSn

Write[7]==1, Offset[6:0] Write Data Byte 0 Write Data Byte 1

OFFSET[6:0]

W
R

T=
1

8-bit Write,Offset

SPICLK

SPIMOSI

SPIMOSI

SPICSn

Write[7]==0, Offset[6:0]

Read Data Byte 0 Read Data Byte 1

OFFSET[6:0]

R
D

=0

8-bit Write,Offset

White Paper

I2C/SPIBOOTLOADERS

I2C/SPI BOOT LOADERS

bootloader Copyright 2016, Ambiq Micro Inc. 4

2. The OTA Boot Loader Protocol

The general layout of the shared register space is the same for all boot loader commands (and in either I2C or
SPI modes) and essentially looks like that shown in Figure 4 Shared Register View of Protocol.

Figure 4 Shared Register View of Protocol

120-12 = 108 bytes
Used for additional

PAYLOAD BYTEs
as desired

4 BYTES of FIFO CONTROL
REGISTERS (unused)

128
Register

Bytes

0x78

0x00

0x7F

0x7C
0x7B4 BYTES of HOST INTERRUPT

CONTROL REGISTERS
(unused)

0x77

Generates Interrupt to
Apollo MCU when
written by host.

CMD BYTE 3

CMD BYTE 2

CMD BYTE 1

CMD BYTE 0

0x01

0x02

0x03

0x04

SIZE BYTE 3

SIZE BYTE 2

SIZE BYTE 1

SIZE BYTE 0

0x05

0x06

0x07

PAYLOAD BYTE 3

PAYLOAD BYTE 2

PAYLOAD BYTE 1

PAYLOAD BYTE 0 0x08

0x09

0x0A

0x0B

0x0C

White Paper

I2C/SPIBOOTLOADERS

I2C/SPI BOOT LOADERS

bootloader Copyright 2016, Ambiq Micro Inc. 5

The first thing to notice about the bootloader protocol is that all data items are multiples of 4 bytes and are always
aligned on 4 byte boundaries within the shared register space.

The second thing to notice is that the Apollo firmware has initialized the I/O slave hardware so that an access
interrupt is generated to the Apollo MCU whenever the host writes to byte 3 of the shared register space. This
should always be the last byte written in any transaction, otherwise the Apollo MCU may way wake up too quickly
and grab stale data from the shared registers before the host has finished writing them.

Thus one should always break the command write operations up in to two transactions:

1. Write all of the bytes of the payload in one transaction.

2. Write the 4 bytes of the command to shared registers 0 through 3 as the very last transaction.

This will trigger the Apollo to wake up and process a command from the host.

The layout of the shared register space for a NEW IMAGE command is shown in Figure 5 New Image command
as seen in the shared registers, on page 6. Whenever a new binary image is to be downloaded to Apollo’s
integrated flash memory, one must send the NEW IMAGE command telling the bootloader where to place the
image and how big the image will be in flash memory. In addition an expected CRC value for the new image is
provided with this command. When the entire image has been downloaded and stored in flash, the boot loader
will re-compute the CRC and make sure that it matches the one provided with this command.

Finally, the NEW IMAGE command can tell the boot loader which pin to monitor at reset to enter the boot loading
state (boot loader override) instead of launching the pre-installed program. The NEW IMAGE command can also
tell the boot loader which polarity to use for detecting the boot loader override function.

It cannot be emphasize enough that byte 3 MUST be the last byte written for any boot loader command sent to
the Apollo MCU.

White Paper

I2C/SPIBOOTLOADERS

I2C/SPI BOOT LOADERS

bootloader Copyright 2016, Ambiq Micro Inc. 6

Figure 5 New Image command as seen in the shared registers

120-16 = 104 bytes
Unused for
new_image

4 BYTES of FIFO CONTROL
REGISTERS (unused)

128
Register

Bytes

0x78

0x00

0x7F

0x7C
0x7B4 BYTES of HOST INTERRUPT

CONTROL REGISTERS
(unused)

0x77

Generates Interrupt to
Apollo MCU when
written by host.

CMD BYTE 3

CMD BYTE 2

CMD BYTE 1

CMD BYTE 0

0x01

0x02

0x03

0x04

LENGTH BYTE 3

LENGTH BYTE 2

LENGTH BYTE 1

LENGTH BYTE 0

0x05

0x06

0x07

CRC BYTE 3

CRC BYTE 2

CRC BYTE 1

CRC BYTE 0

0x08

0x09

0x0A

0x0B

ADDR BYTE 3

ADDR BYTE 2

ADDR BYTE 1

ADDR BYTE 0

0x0C

0x0D

0x0E

0x0F

0x10

White Paper

I2C/SPIBOOTLOADERS

I2C/SPI BOOT LOADERS

bootloader Copyright 2016, Ambiq Micro Inc. 7

The override command allows the host to tell the boot loader which GPIO pin to monitor for forcing a boot load
operation even when a valid program is present.

Figure 6 GPIO Override Command

120-12 = 108 bytes
Unused for

Override Command

4 BYTES of FIFO CONTROL
REGISTERS (unused)

128
Register

Bytes

0x78

0x00

0x7F

0x7C
0x7B4 BYTES of HOST INTERRUPT

CONTROL REGISTERS
(unused)

0x77

Generates Interrupt to
Apollo MCU when
written by host.

CMD BYTE 3

CMD BYTE 2

CMD BYTE 1

CMD BYTE 0

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

0x0A

0x0B

GPIO BYTE 3

GPIO BYTE 2

GPIO BYTE 1

GPIO BYTE 0

0x0C

POLARITY BYTE 3

POLARITY BYTE 2

POLARITY BYTE 1

POLARITY BYTE 0

White Paper

I2C/SPIBOOTLOADERS

I2C/SPI BOOT LOADERS

bootloader Copyright 2016, Ambiq Micro Inc. 8

2.1 Sending Commands to the Apollo Sensor Hub
When a command is to be sent to the boot loader running on the Apollo, it must sent according to the diagram of
Figure 5 New Image command as seen in the shared registers.

Figure 7 Sending Command from Host to Sensor Hub

SPICLK

SPIMOSI

SPIMOSI

SPICSn

O
FF

SE
T

=
0

x1
4

P
A

Y
LO

A
D

 B
Y

TE
 0

P
A

Y
LO

A
D

 B
Y

TE
 1

P
A

Y
LO

A
D

 B
Y

TE
 2

P
A

Y
LO

A
D

 B
Y

TE
 3

P
A

Y
LO

A
D

 B
Y

TE
 4

PAYLOAD BYTE 2

PAYLOAD BYTE 1

PAYLOAD BYTE 3

PAYLOAD BYTE 4

PAYLOAD BYTE 0

120 -9 = 111
Additional Payload Bytes

as needed.

0x00

0x03

0x04

0x05

0x06

0x07

0x08
0x09

0x7F

SPICLK

SPIMOSI

SPIMOSI

SPICSn

O
FF

SE
T

=
0

x8
0

C
M

D
 B

Y
TE

 0

TRANSACTION #2

TRANSACTION #1

SHARED
REGISTERS

Interrupt to Apollo MCU

COMMAND BYTE 3

COMMAND BYTE 2

COMMAND BYTE 1

COMMAND BYTE 0

0x01

0x02

Host Side Control
Registers
UNUSED 0x78

0x77

C
M

D
 B

Y
TE

 1

C
M

D
 B

Y
TE

 2

C
M

D
 B

Y
TE

 3

White Paper

I2C/SPIBOOTLOADERS

I2C/SPI BOOT LOADERS

bootloader Copyright 2016, Ambiq Micro Inc. 9

The host initiates a command transfer by using a SPI write transaction to send the payload size and the payload
bytes to a message buffer located in the Apollo I/O slave shared register space beginning at offset 0x04 (4).

The host then uses a second SPI write transaction to write four bytes containing the command to offset 0x00 (0)
in the shared register space. During initialization, the Apollo firmware has set a special mode of operation on the
byte at 0x03. In this mode, any write from the host to offset 0x03 will cause an interrupt to be generated to the
Apollo MCU, waking it up to process the command. Since this interrupt tells the Apollo that all bytes of the
command are present in the shared register space then this write must occur as the last operation of the
command. Thus we need to use two separate SPI write transactions to send a command to the Apollo.

The Apollo firmware will grab the command from the shared register buffer once it wakes up and will examine the
command word from the first 4 bytes to determine what is required in response to this command transaction.

White Paper

I2C/SPIBOOTLOADERS

I2C/SPI BOOT LOADERS

bootloader Copyright 2016, Ambiq Micro Inc. 10

2.2 Receiving Responses from the Apollo Sensor Hub

Figure 8 Reading a Response from the Apollo Boot Loader

When the Apollo firmware has a response to send to the host, it first loads the response bytes into the shared
register buffer located at offset 0x00 (0) in the shared register space. It then asserts a software interrupt to the
host on GPIO[4] using a GPIO output control to pull the line low.

Setting this interrupt alerts the host that the response data is ready to be read from the Apollo. As shown in Figure
8 Reading a Response from the Apollo Boot Loader, the host uses a SPI read transaction to read the response
type bytes and any additional response bytes from the Apollo I/O slave response buffer.

SPICLK

SPIMOSI

SPIMOSI

SPICSn

O
FF

SE
T

=
0

x9
0

R
e

sp
o

n
se

 T
yp

e
 B

0

R
e

sp
o

n
se

 T
yp

e
 B

1

R
e

sp
o

n
se

 T
yp

e
 B

2

R
e

sp
o

n
se

 T
yp

e
 B

3

R
e

sp
o

n
se

 B
yt

e
 n

Response Type Byte 2

Response Type Byte 1

Response Type Byte 3

Response Type Byte 0

Additional Response
Bytes in groups of 4 as

needed.

0x00

0x01

0x02

0x03

0x04

0x7F

TRANSACTION #1

SHARED
REGISTERS

SPIINT

GPIO interrupt signals host to
read response over SPI bus.

White Paper

I2C/SPIBOOTLOADERS

I2C/SPI BOOT LOADERS

bootloader Copyright 2016, Ambiq Micro Inc. 11

2.3 Commands in the Boot Loader Repertoire

COMMAND CMD # # BYTES Description

ACK 0 4 Acknowlege

NAK 1 4 Negative Ackknowledge

NEW_IMAGE 2 4+12 READY for next data packet

NEW_PACKET 3 4+4+n IMAGE_CMPLT last data packet was good and so was
total CRC.

RESET 4 4 Issue a reset to the Apollo MCU and reboot into user
program.

OVERRIDE 5 4+8

BL VERSION 6 4 Respond with boot loader version.

FW VERSION 7 4 Respond with firmware version.

DBG_READ 8 4 Respond with well-known data array

DBG_ECHO 9 4+n Respond with complement n bytes in command.

RESPONSE RSP # # BYTES Description

ACK 0 4 Acknowledge successful NEW_IMAGE command

NAK 1 4 Negative acknowledge bad NEW_IMAGE command

READY 2 4 Send next data packet

IMAGE_CMPLT 3 4 Image complete and CRC checks

BAD_CRC 4 4 Bad CRC on image

ERROR 5 4 Error occurred in command processing.

BL_VERSION 6 4+4 Boot loader version information.

FW_VERSION 7 4+4 Firmware version information

DBG_READ 8 4+20 Respond with 20 well known bytes.

DBG_ECHO 9 4+32 Respond with complement of 32 bytes sent with
command.

White Paper

I2C/SPIBOOTLOADERS

I2C/SPI BOOT LOADERS

bootloader Copyright 2016, Ambiq Micro Inc. 12

2.4 Logic Analyzer Screen Captures

Figure 9 From the Beginning of a SPI Write Transaction

Figure 10 From the Middle of a SPI Write Transaction

Figure 11 From the End of a SPI Write Transaction

CS fall to Clock rise

Setup first MOSI bit

Bit Valid Time

CS rise hold time

White Paper

I2C/SPIBOOTLOADERS

I2C/SPI BOOT LOADERS

bootloader Copyright 2016, Ambiq Micro Inc. 13

3. I2C Mode

The boot loader can be configured at compile time to accept I2C downloads instead of SPI downloads. The boot
loader has some minor set up code differences but once the I/O slave is configured and initialized, the rest of the
bootloader code is identical regardless of whether I2C or SPI mode is used in the I/O slave.

Refer to the data sheet description of the Apollo MCU to see how the I/O slave behaves in I2C mode versus SPI
mode.

White Paper

I2C/SPIBOOTLOADERS

I2C/SPI BOOT LOADERS

bootloader Copyright 2016, Ambiq Micro Inc. 14

Table of Contents

Table of Contents
1. Introduction ... 1

2. The OTA Boot Loader Protocol .. 4

2.1 Sending Commands to the Apollo Sensor Hub ... 8

2.2 Receiving Responses from the Apollo Sensor Hub .. 10

2.3 Commands in the Boot Loader Repertoire .. 11

2.4 Logic Analyzer Screen Captures ... 12

3. I2C Mode .. 13

Document Updates

VERSION DATE AUTHOR DESCRIPTION

0.0 8/25/2015 DB Created

0.1 10/26/2015 DB Updated for run time selection between I2C and SPI bus modes.

0.2 4/5/2016 DB Updated to change run selection of I2C versus SPI bus modes back to a
compile time option and other minor cleanups.

