

GPIO-SDK-0p1 Page 1 of 12 ©2018 Ambiq Micro, Inc.

All rights reserved.

GPIO Implementation

Revision 0.2
April 2018

GPIO-SDK-0p1 Page 2 of 12 ©2018 Ambiq Micro, Inc.

All rights reserved.

Revision History
Date Revision History Reviser

Apr 3, 2018 0.2 Interrupts and r/w macros RH

Mar 30, 2018 0.1 Initial Version RH

GPIO-SDK-0p1 Page 3 of 12 ©2018 Ambiq Micro, Inc.

All rights reserved.

Contents

1. Introduction .. 4

2. Overview of the GPIO API functions .. 5

2.1 am_hal_gpio_pinconfig() ... 5

2.2 am_hal_gpio_state_read() .. 6

2.3 am_hal_gpio_state_write() .. 7

3. Creating a BSP pin list ... 11

3.1 Create the bsp_pins.src file .. 11

GPIO-SDK-0p1 Page 4 of 12 ©2018 Ambiq Micro, Inc.

All rights reserved.

1. Introduction

The GPIO HAL implementation for Apollo3 has changed significantly from previous Apollo and Apollo2
implementations. The hardware design for Apollo3 GPIO remains very similar to the previous products with a few
new features added. The new GPIO features, however, do add some complexity that the new GPIO HAL makes
more manageable for the user.

The previous software implementation was heavily dependent on macros for configuration and usage, which caused
confusion to end users, especially with pin configuration, and contributed to code size due to the inline coding. The
new implementation abstracts most of the configuration into the HAL with the caller supplying a single word
containing all pin configuration parameters in a single 32-bit word defined by a standard C bitfield structure.

GPIO-SDK-0p1 Page 5 of 12 ©2018 Ambiq Micro, Inc.

All rights reserved.

2. Overview of the GPIO API functions

2.1 am_hal_gpio_pinconfig()

This function is called when configuring a given pad for its ultimate function. The specified parameters (bfGpioCfg)
are checked for compatibility with the specified pin. Any configuration or parameter errors result in an error return.

The prototype is am_hal_gpio_pinconfig(uint32_t ui32Pin, am_hal_gpio_pincfg_t bfGpioCfg).

The ui32Pin parameter is simply the pin number to be configured.

am_hal_gpio_pincfg_t is a bitfield structure containing the following members:

uFuncSel This is a value from 0-7 which will usually come from am_hal_pin.h.

ePullup Many pads can supply a pullup resistor. For those that do, this member defines the value of that
pullup. It is one of the following enumerations:

 AM_HAL_GPIO_PIN_PULLUP_NONE

 AM_HAL_GPIO_PIN_PULLUP_1_5K

 AM_HAL_GPIO_PIN_PULLUP_6K

eGPOutcfg This member is generally used when defining a pad as a GPIO output and defines the output type.
It is one of the following enumerations:

 AM_HAL_GPIO_PIN_OUTCFG_DISABLE

 AM_HAL_GPIO_PIN_OUTCFG_PUSHPULL

 AM_HAL_GPIO_PIN_OUTCFG_OPENDRAIN

 AM_HAL_GPIO_PIN_OUTCFG_TRISTATE

eDriveStrength For output configurations, many pads can be configured with various drive strengths. For those
that do, this member defines that and will be one of the following enumerations:

 AM_HAL_GPIO_PIN_DRIVESTRENGTH_2MA

 AM_HAL_GPIO_PIN_DRIVESTRENGTH_4MA

 AM_HAL_GPIO_PIN_DRIVESTRENGTH_8MA

 AM_HAL_GPIO_PIN_DRIVESTRENGTH_12MA

eGPInput This member is generally used when defining a pad as a GPIO input and defines the input type. It
is one of the following enumerations:

 AM_HAL_GPIO_PIN_INPUT_NONE

 AM_HAL_GPIO_PIN_INPUT_ENABLE

eGPRdZero This member is generally used when defining a pad as a GPIO input and defines whether the pin
value can be read or if it always reads as zero. It is one of the following enumerations:

 AM_HAL_GPIO_PIN_RDZERO_READPIN

 AM_HAL_GPIO_PIN_RDZERO_ZERO

eIntDir This member is used when interrupts are to be enabled for a pad. It is one of the following
enumerations:

GPIO-SDK-0p1 Page 6 of 12 ©2018 Ambiq Micro, Inc.

All rights reserved.

 AM_HAL_GPIO_PIN_INTDIR_LO2HI

 AM_HAL_GPIO_PIN_INTDIR_HI2LO

 AM_HAL_GPIO_PIN_INTDIR_NONE

 AM_HAL_GPIO_PIN_INTDIR_BOTH

ePowerSw A select number of pins can be configured to source or sink current (see datasheet for which pins
support these functions). For pins that support it, it is one of the following enumerations:

 AM_HAL_GPIO_PIN_POWERSW_NONE

 AM_HAL_GPIO_PIN_POWERSW_VDD

 AM_HAL_GPIO_PIN_POWERSW_VSS

uIOMnum This member is used when a pad is defined to be a chip enable and designates the IO Master
number (0-5) or MSPI (6) that the CE is to be used for. Most pads can be configured as a chip
enable with each pad supporting 4 combinations of IOM/MSPI and channel numbers. See the
datasheet for a table of these combinations. This member is always a value of 0-5 or 6.

uNCE This member is used when a pad is defined to be a chip enable and is used in conjunction with
uIOMnum to define the CE number for a particular SPI device. It is always a value of 0-3.

eCEpol This member is used when a pad is defined to be a chip enable and specifies the polarity of the CE
enable. It is one of the following enumerations:

 AM_HAL_GPIO_PIN_CEPOL_ACTIVELOW

 AM_HAL_GPIO_PIN_CEPOL_ACTIVEHIGH

2.2 am_hal_gpio_state_read()

This function is used for reading GPIO values.

The prototype is am_hal_gpio_state_read(uint32_t ui32Pin, am_hal_gpio_read_type_e eReadType, uint32_t
*pui32ReadState).

ui32Pin is the pin number to be read.

eReadType is one of the following enumerations:

 AM_HAL_GPIO_INPUT_READ

 AM_HAL_GPIO_OUTPUT_READ

 AM_HAL_GPIO_ENABLE_READ

pui32ReadState is a pointer to the variable to receive the read value of the pin.

GPIO-SDK-1p10 Page 7 of 12 ©2017 Ambiq Micro, Inc.

All rights reserved.

2.3 am_hal_gpio_state_write()

This function is used for writing GPIO values.

The prototype is am_hal_gpio_state_write(uint32_t ui32Pin, am_hal_gpio_write_type_e eWriteType).

ui32Pin is the pin number to be read.

eWriteType is one of the following enumerations:

 AM_HAL_GPIO_OUTPUT_SET

 AM_HAL_GPIO_OUTPUT_CLEAR

 AM_HAL_GPIO_OUTPUT_TOGGLE

 AM_HAL_GPIO_OUTPUT_TRISTATE_ENABLE

 AM_HAL_GPIO_OUTPUT_TRISTATE_DISABLE

2.4 Interrupt functions

As with other peripherals, pins configured as GPIOs can be configured to provide interrupts. The HAL provides
several functions to support this functionality.

2.4.1 am_hal_gpio_interrupt_enable(uint64_t ui64InterruptMask)
This function enables the given interrupt(s). Only bits 0-49 are valid in the mask.

2.4.2 am_hal_gpio_interrupt_disable(uint64_t ui64InterruptMask)
This function disables the given interrupt(s). Only bits 0-49 are valid in the mask.

2.4.3 am_hal_gpio_interrupt_clear(uint64_t ui64InterruptMask)
This function clears the given interrupt(s). Only bits 0-49 are valid in the mask. This function is often
used in conjunction with am_hal_gpio_interrupt_status_get(), with the returned IntStatus used as the
input to this function.

2.4.4 am_hal_gpio_interrupt_status_get(bool bEnabledOnly, uint64_t
*pui64IntStatus)
This function returns the current interrupt status.

The API function returns AM_HAL_STATUS_SUCCESS if successful, otherwise it returns a fail code.

GPIO-SDK-1p10 Page 8 of 12 ©2017 Ambiq Micro, Inc.

All rights reserved.

2.4.5 am_hal_gpio_interrupt_status_get(bool bEnabledOnly, uint64_t
*pui64IntStatus)
This function returns the current interrupt status. It can return the status of every interrupt
(bEnabledOnly=false) or the status of only those that are enabled (bEnabledOnly=true). The 64bit
variable pointed to be pui64IntStatus contains the return status.

The API function returns AM_HAL_STATUS_SUCCESS if successful, otherwise it returns a fail code.

2.5 GPIO Read and Write Macros

While the primary read and write functions will suffice for virtually all applications, there may be situations where
minimal response time is required. To support these situations a set of macros are provided which provide
minimal inline code for accessing GPIOs.

Advantages to usage of these macros include faster GPIO read or write access times, no function call overhead,
and simple read return values.

Drawbacks to usage of these macros include no error checking, larger resultant code size, no guaranteed
atomicity, and risk to general safety.

The “_read” macros are counterparts to the enumerations used for the am_hal_gpio_state_read() function.

Likewise, the “_set, _clear, _toggle) macros are counterparts to the enumerations used for the
am_hal_gpio_state_write() function.

The macros and their usage are outlined here.

2.5.1 am_hal_gpio_input_read(n)
Counterpart to am_hal_gpio_state_read(AM_HAL_GPIO_INPUT_READ).

This macro is used for reading the value on a pin given by ‘n’ and returns the value as either a 0 or 1. It
assumes the pin has been configured for reading. The macro effectively reads the appropriate value from
the GPIO RDA or GPIO RDB registers.

2.5.2 am_hal_gpio_output_read(n)
Counterpart to am_hal_gpio_state_read(AM_HAL_GPIO_OUTPUT_READ).

This macro is used for reading the value that was most recently written to the GPIO WTA or GPIO WTB
register to be output to the pin (the pin given by ‘n’) and returns the value as either a 0 or 1.

2.5.3 am_hal_gpio_enable_read(n)
Counterpart to am_hal_gpio_state_read(AM_HAL_GPIO_ENABLE_READ).

This macro is used for reading the value that was most recently written to the GPIO Enable (ENA or ENB)
register. The enable is typically used when the pin is configured as GPIO and tri-state output and
enables the output. The pin enable to be read is designated by ‘n’, and the macro returns the value as
either a 0 or 1.

 Page 9 of 12 ©2017 Ambiq Micro, Inc.

All rights reserved.

2.5.4 am_hal_gpio_output_clear(n)
Counterpart to am_hal_gpio_state_write(AM_HAL_GPIO_OUTPUT_CLEAR).

This macro is used for writing a 0 to output to the pin designated by ‘n’. There is no return value.

2.5.5 am_hal_gpio_output_set(n)
Counterpart to am_hal_gpio_state_write(AM_HAL_GPIO_OUTPUT_SET).

This macro is used for writing a 1 to output to the pin designated by ‘n’. There is no return value.

2.5.6 am_hal_gpio_output_toggle(n)
Counterpart to am_hal_gpio_state_write(AM_HAL_GPIO_OUTPUT_TOGGLE).

This macro is used to toggle the current value being output to the pin designated by ‘n’. There is no
return value.

2.5.7 am_hal_gpio_output_tristate_disable(n)
Counterpart to am_hal_gpio_state_write(AM_HAL_GPIO_TRISTATE_DISABLE).

This macro is used to disable the output enable on the pin designated by ‘n’. There is no return value.

2.5.8 am_hal_gpio_output_tristate_enable(n)
Counterpart to am_hal_gpio_state_write(AM_HAL_GPIO_TRISTATE_ENABLE).

This macro is used to enable the output enable on the pin designated by ‘n’. There is no return value.

2.5.9 am_hal_gpio_output_tristate_toggle(n)
Counterpart to am_hal_gpio_state_write(AM_HAL_GPIO_TRISTATE_TOGGLE).

This macro is used to toggle the current value of the output enable on the pin designated by ‘n’. There is
no return value.

 Page 10 of 12 ©2017 Ambiq Micro, Inc.

All rights reserved.

2.5.10 am_hal_gpio_interrupt_register(uint32_t ui32GPIONumber,
am_hal_gpio_handler_t pdnHandler)
This function is call by the application for registering specific handlers to specific GPIO interrupts.

The API function returns AM_HAL_STATUS_SUCCESS if successful, otherwise it returns a fail code.

2.5.11 am_hal_gpio_interrupt_service(uint64_t ui64Status)
This function is an overall service routine for GPIO interrupts. It is called by am_gpio_isr(), which also
calls am_hal_gpio_interrupt_status_get() to use as an input parameter to this function.

The general usage is that the application calls am_hal_gpio_interrupt_register() to register a callback
routine that this routine will call when the registered interrupt occurs. The application also supplies the
main handler, am_gpio_isr().

The API function returns AM_HAL_STATUS_SUCCESS if successful, otherwise it returns a fail code.

 Page 11 of 12 ©2017 Ambiq Micro, Inc.

All rights reserved.

3. Creating a BSP pin list

3.1 Create the bsp_pins.src file

The file bsp_pins.src is a simple text file containing a list of keywords and values. It is subsequently read in by a
Python script and generates two files: am_bsp_pins.c and am_bsp_pins.h. These two C files contain each of the
pins bitfield structures that are passed along to am_hal_gpio_pinconfig().

Note - the .src file should contain no tab characters (only spaces).
Also, indentation is important. A tab indentation of 4 spaces is recommended.

Each pin entry takes the form:

pin

 name = UART_TX

 desc = This pin is the COM_UART transmit pin.

 pinnum = 35

 func_sel = AM_HAL_PIN_35_UART1TX

 drvstrength = 2

While there are about a dozen keywords (parameters) available, only the parameters required to define a pin
need be included in any particular definition.

The keywords used in the file are:

name The name to be used for the pin. This name will be used as a base for generating
defines. Each pin name must be unique.

desc Optional: A description, if provided, will appear in the generated header file.
funcsel A value 0-7, or the equivalent AM_HAL_PIN_nn_xxxx macro from am_hal_pin.h. Note

that the AM_HAL_PIN_nn_xxxx nomenclature is preferred.
pinnum The pin number for the pin being defined (0-49).
drvstrength One of: 2, 4, 8, or 12. If not provided, 2 is default.
GPOutCfg Typically used if the pin is being defined as GPIO (funcsel=3).

One of: disable, pushpull, opendrain, tristate. *
Also acceptable is a value 0-3, or a define.

GPinput Only used if the pin is being defined as GPIO (funcsel=3).
 One of: true, false.
GPRdZero One of readpin, zero (or true or false).
intdir One of: none, lo2hi, hi2lo, either.

Note - does not enable any interrupt. Only configures the direction for when it is enabled.
pullup One of: none, 1_5K, 6K, 12K, 24K. Also acceptable is a define (e.g.

AM_HAL_GPIO_PIN_PULLUP_1_5K).
PowerSw One of: VDD or VSS. Also acceptable is a define (e.g.

AM_HAL_GPIO_PIN_POWERSW_VDD).

The following 3 parameters only apply when the pin is being defined as a chip enable, i.e. a CE for a SPI

or MSPI device.
IOMnum The IOM number pertaining to the CE. 0-5 for SPI, 6 for MSPI.
CENum A value from 0-3 representing the chip enable channel number.
 Results in a C define of the form:
 #define AM_BSP_<name>_CHNL <CEnum>
CEpol Designates the chip enable polarity, active high or active low.
 One of: LOW (default) or HIGH.

 Page 12 of 12 ©2017 Ambiq Micro, Inc.

All rights reserved.

Contact Information

Address Ambiq Micro, Inc.

6500 River Place Blvd.
Building 7, Suite 200
Austin, TX 78730

Phone +1 (512) 879-2850
Website http://www.ambiqmicro.com
General Information info@ambiqmicro.com
Sales sales@ambiqmicro.com
Technical Support support@ambiqmicro.com

Legal Information and Disclaimers

AMBIQ MICRO INTENDS FOR THE CONTENT CONTAINED IN THE DOCUMENT TO BE ACCURATE AND RELIABLE. THIS CONTENT
MAY, HOWEVER, CONTAIN TECHNICAL INACCURACIES, TYPOGRAPHICAL ERRORS OR OTHER MISTAKES. AMBIQ MICRO MAY
MAKE CORRECTIONS OR OTHER CHANGES TO THIS CONTENT AT ANY TIME. AMBIQ MICRO AND ITS SUPPLIERS RESERVE THE
RIGHT TO MAKE CORRECTIONS, MODIFICATIONS, ENHANCEMENTS, IMPROVEMENTS AND OTHER CHANGES TO ITS PRODUCTS,
PROGRAMS AND SERVICES AT ANY TIME OR TO DISCONTINUE ANY PRODUCTS, PROGRAMS, OR SERVICES WITHOUT NOTICE.

THE CONTENT IN THIS DOCUMENT IS PROVIDED "AS IS". AMBIQ MICRO AND ITS RESPECTIVE SUPPLIERS MAKE NO
REPRESENTATIONS ABOUT THE SUITABILITY OF THIS CONTENT FOR ANY PURPOSE AND DISCLAIM ALL WARRANTIES AND
CONDITIONS WITH REGARD TO THIS CONTENT, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED WARRANTIES AND CONDITIONS
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT OF ANY THIRD PARTY
INTELLECTUAL PROPERTY RIGHT.

AMBIQ MICRO DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED UNDER ANY
PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT OF AMBIQ MICRO COVERING OR
RELATING TO THIS CONTENT OR ANY COMBINATION, MACHINE, OR PROCESS TO WHICH THIS CONTENT RELATE OR WITH WHICH
THIS CONTENT MAY BE USED.

USE OF THE INFORMATION IN THIS DOCUMENT MAY REQUIRE A LICENSE FROM A THIRD PARTY UNDER THE PATENTS OR OTHER
INTELLECTUAL PROPERTY OF THAT THIRD PARTY, OR A LICENSE FROM AMBIQ MICRO UNDER THE PATENTS OR OTHER
INTELLECTUAL PROPERTY OF AMBIQ MICRO.

INFORMATION IN THIS DOCUMENT IS PROVIDED SOLELY TO ENABLE SYSTEM AND SOFTWARE IMPLEMENTERS TO USE AMBIQ
MICRO PRODUCTS. THERE ARE NO EXPRESS OR IMPLIED COPYRIGHT LICENSES GRANTED HEREUNDER TO DESIGN OR
FABRICATE ANY INTEGRATED CIRCUITS OR INTEGRATED CIRCUITS BASED ON THE INFORMATION IN THIS DOCUMENT. AMBIQ
MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN. AMBIQ MICRO MAKES
NO WARRANTY, REPRESENTATION OR GUARANTEE REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR
PURPOSE, NOR DOES AMBIQ MICRO ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR
CIRCUIT, AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY, INCLUDING WITHOUT LIMITATION CONSEQUENTIAL OR
INCIDENTAL DAMAGES. “TYPICAL” PARAMETERS WHICH MAY BE PROVIDED IN AMBIQ MICRO DATA SHEETS AND/OR
SPECIFICATIONS CAN AND DO VARY IN DIFFERENT APPLICATIONS AND ACTUAL PERFORMANCE MAY VARY OVER TIME. ALL
OPERATING PARAMETERS, INCLUDING “TYPICALS” MUST BE VALIDATED FOR EACH CUSTOMER APPLICATION BY CUSTOMER’S
TECHNICAL EXPERTS. AMBIQ MICRO DOES NOT CONVEY ANY LICENSE UNDER NEITHER ITS PATENT RIGHTS NOR THE RIGHTS
OF OTHERS. AMBIQ MICRO PRODUCTS ARE NOT DESIGNED, INTENDED, OR AUTHORIZED FOR USE AS COMPONENTS IN SYSTEMS
INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR OTHER APPLICATIONS INTENDED TO SUPPORT OR SUSTAIN LIFE, OR
FOR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE AMBIQ MICRO PRODUCT COULD CREATE A SITUATION WHERE
PERSONAL INJURY OR DEATH MAY OCCUR. SHOULD BUYER PURCHASE OR USE AMBIQ MICRO PRODUCTS FOR ANY SUCH
UNINTENDED OR UNAUTHORIZED APPLICATION, BUYER SHALL INDEMNIFY AND HOLD AMBIQ MICRO AND ITS OFFICERS,
EMPLOYEES, SUBSIDIARIES, AFFILIATES, AND DISTRIBUTORS HARMLESS AGAINST ALL CLAIMS, COSTS, DAMAGES, AND
EXPENSES, AND REASONABLE ATTORNEY FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PERSONAL INJURY
OR DEATH ASSOCIATED WITH SUCH UNINTENDED OR UNAUTHORIZED USE, EVEN IF SUCH CLAIM ALLEGES THAT AMBIQ MICRO
WAS NEGLIGENT REGARDING THE DESIGN OR MANUFACTURE OF THE PART.

http://www.ambiqmicro.com/
mailto:info@ambiqmicro.com
mailto:sales@ambiqmicro.com
mailto:support@ambiqmicro.com

