vos/ambiq-hal-sys/ambiq-sparkfun-sdk/mcu/apollo3p/hal/am_hal_iom.c

3589 lines
118 KiB
C
Raw Normal View History

2022-10-24 06:45:43 +00:00
//*****************************************************************************
//
// am_hal_iom.c
//! @file
//!
//! @brief Functions for interfacing with IO Master serial (SPI/I2C) modules.
//!
//! @addtogroup iom3p
//! @ingroup apollo3phal
//! @{
//
//*****************************************************************************
//*****************************************************************************
//
// Copyright (c) 2020, Ambiq Micro
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from this
// software without specific prior written permission.
//
// Third party software included in this distribution is subject to the
// additional license terms as defined in the /docs/licenses directory.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// This is part of revision 2.4.2 of the AmbiqSuite Development Package.
//
//*****************************************************************************
#include <stdint.h>
#include <stdbool.h>
#include "am_mcu_apollo.h"
#ifdef __IAR_SYSTEMS_ICC__
#define AM_INSTR_CLZ(n) __CLZ(n)
#else
#define AM_INSTR_CLZ(n) __builtin_clz(n)
#endif
#define MANUAL_POP 0
#define AM_HAL_MAGIC_IOM 0x123456
#define AM_HAL_IOM_CHK_HANDLE(h) ((h) && ((am_hal_handle_prefix_t *)(h))->s.bInit && (((am_hal_handle_prefix_t *)(h))->s.magic == AM_HAL_MAGIC_IOM))
// For IOM - Need to clear the flag for unpausing
#define AM_HAL_IOM_SC_PAUSE_CQ AM_HAL_IOM_SC_PAUSE(AM_HAL_IOM_PAUSE_FLAG_CQ)
#define AM_HAL_IOM_SC_PAUSE_SEQLOOP AM_HAL_IOM_SC_PAUSE(AM_HAL_IOM_PAUSE_FLAG_SEQLOOP)
#define AM_HAL_IOM_SC_UNPAUSE_CQ AM_HAL_IOM_SC_UNPAUSE(AM_HAL_IOM_PAUSE_FLAG_CQ)
#define AM_HAL_IOM_SC_UNPAUSE_SEQLOOP AM_HAL_IOM_SC_UNPAUSE(AM_HAL_IOM_PAUSE_FLAG_SEQLOOP)
#define AM_HAL_IOM_SC_PAUSE_BLOCK AM_HAL_IOM_SC_PAUSE(AM_HAL_IOM_PAUSE_FLAG_BLOCK)
#define AM_HAL_IOM_SC_UNPAUSE_BLOCK AM_HAL_IOM_SC_UNPAUSE(AM_HAL_IOM_PAUSE_FLAG_BLOCK)
// Max time to wait when attempting to pause the command queue
#define AM_HAL_IOM_MAX_PAUSE_DELAY (100*1000) // 100ms
//*****************************************************************************
//
// IOM interface clock selections
//
//*****************************************************************************
#define AM_REG_IOM_CLKCFG_FSEL_MIN_PWR 0x00000000
#define AM_REG_IOM_CLKCFG_FSEL_HFRC 0x00000100
#define AM_REG_IOM_CLKCFG_FSEL_HFRC_DIV2 0x00000200
#define AM_REG_IOM_CLKCFG_FSEL_HFRC_DIV4 0x00000300
#define AM_REG_IOM_CLKCFG_FSEL_HFRC_DIV8 0x00000400
#define AM_REG_IOM_CLKCFG_FSEL_HFRC_DIV16 0x00000500
#define AM_REG_IOM_CLKCFG_FSEL_HFRC_DIV32 0x00000600
#define AM_REG_IOM_CLKCFG_FSEL_HFRC_DIV64 0x00000700
//
// Only keep IOM interrupts we're interested in
//
// Necessary interrupts for respective modes
// For CQ - we rely only on the CQUPD interrupt
#define AM_HAL_IOM_INT_CQMODE (AM_HAL_IOM_INT_CQUPD | AM_HAL_IOM_INT_ERR)
// Need both CMDCMP & DCMP, as for Read we need to wait for DCMP after CMDCMP
#define AM_HAL_IOM_INT_DMAMODE (AM_HAL_IOM_INT_CMDCMP | AM_HAL_IOM_INT_DCMP | AM_HAL_IOM_INT_ERR)
// Configures the interrupts to provided coniguration - clearing all pending interrupts
#define IOM_SET_INTEN(ui32Module, intCfg) \
do \
{ \
IOMn(ui32Module)->INTEN = 0; \
IOMn(ui32Module)->INTCLR = AM_HAL_IOM_INT_ALL; \
IOMn(ui32Module)->INTEN = (intCfg); \
} while (0);
//*****************************************************************************
//
// Private Types.
//
//*****************************************************************************
//
// Command Queue entry structure.
//
typedef struct
{
uint32_t ui32PAUSENAddr;
uint32_t ui32PAUSEENVal;
uint32_t ui32PAUSEN2Addr;
uint32_t ui32PAUSEEN2Val;
uint32_t ui32OFFSETHIAddr;
uint32_t ui32OFFSETHIVal;
uint32_t ui32DEVCFGAddr;
uint32_t ui32DEVCFGVal;
uint32_t ui32DMACFGdis1Addr;
uint32_t ui32DMACFGdis1Val;
uint32_t ui32DMATOTCOUNTAddr;
uint32_t ui32DMATOTCOUNTVal;
uint32_t ui32DMATARGADDRAddr;
uint32_t ui32DMATARGADDRVal;
uint32_t ui32DMACFGAddr;
uint32_t ui32DMACFGVal;
uint32_t ui32DCXAddr;
uint32_t ui32DCXVal;
uint32_t ui32CMDAddr;
uint32_t ui32CMDVal;
uint32_t ui32SETCLRAddr;
uint32_t ui32SETCLRVal;
} am_hal_iom_txn_cmdlist_t;
//
// Command Queue entry structure for Sequence Repeat
//
typedef struct
{
uint32_t ui32PAUSENAddr;
uint32_t ui32PAUSEENVal;
uint32_t ui32PAUSEN2Addr;
uint32_t ui32PAUSEEN2Val;
uint32_t ui32SETCLRAddr;
uint32_t ui32SETCLRVal;
} am_hal_iom_cq_loop_entry_t;
#define AM_HAL_IOM_MAX_PENDING_TRANSACTIONS 256 // Must be power of 2 for the implementation below
#define AM_HAL_IOM_CQUPD_INT_FLAG (0x00000001)
typedef struct
{
bool bValid;
uint32_t regFIFOTHR;
uint32_t regDMATRIGEN;
uint32_t regCLKCFG;
uint32_t regSUBMODCTRL;
uint32_t regCQCFG;
uint32_t regCQADDR;
uint32_t regCQFLAGS;
uint32_t regCQPAUSEEN;
uint32_t regCQCURIDX;
uint32_t regCQENDIDX;
uint32_t regMSPICFG;
uint32_t regMI2CCFG;
uint32_t regINTEN;
} am_hal_iom_register_state_t;
typedef enum
{
AM_HAL_IOM_SEQ_NONE,
AM_HAL_IOM_SEQ_UNDER_CONSTRUCTION,
AM_HAL_IOM_SEQ_RUNNING,
} am_hal_iom_seq_e;
typedef struct
{
uint32_t ui32OFFSETHIVal;
uint32_t ui32DEVCFGVal;
uint32_t ui32DMATOTCOUNTVal;
uint32_t ui32DMATARGADDRVal;
uint32_t ui32DMACFGVal;
uint32_t ui32CMDVal;
am_hal_iom_callback_t pfnCallback;
void *pCallbackCtxt;
} am_hal_iom_dma_entry_t;
typedef struct
{
am_hal_handle_prefix_t prefix;
//
// Physical module number.
//
uint32_t ui32Module;
//
// Interface mode (SPI or I2C).
//
am_hal_iom_mode_e eInterfaceMode;
//
// Non-Blocking transaction Tranfer Control Buffer.
//
uint32_t *pNBTxnBuf;
uint32_t ui32NBTxnBufLength;
//
// Saves the user application defined interrupt configuration.
//
uint32_t ui32UserIntCfg;
//
// Saves the transaction interrupt state for non-blocking interrupt service.
//
uint32_t ui32TxnInt;
//
// Index of last non-blocking transaction processed in CQ.
//
uint32_t ui32LastIdxProcessed;
// Maximum number of transactions allowed in the CQ.
uint32_t ui32MaxTransactions;
//
// Number of pending transactions in the CQ.
//
volatile uint32_t ui32NumPendTransactions;
//
// Stores the CQ callbacks and contexts.
//
am_hal_iom_callback_t pfnCallback[AM_HAL_IOM_MAX_PENDING_TRANSACTIONS];
void *pCallbackCtxt[AM_HAL_IOM_MAX_PENDING_TRANSACTIONS];
//
// Handle to the CQ.
//
void *pCmdQHdl;
//
// To support sequence.
//
am_hal_iom_seq_e eSeq;
bool bAutonomous;
//
// This is used to track the number of transactions in a sequence.
//
uint32_t ui32NumSeqTransactions;
volatile bool bRestart;
uint32_t block;
//
// To support high priority transactions - out of band
// High Priority DMA transactions
//
volatile bool bHP;
uint32_t ui32NumHPEntries;
uint32_t ui32NumHPPendingEntries;
uint32_t ui32MaxHPTransactions;
uint32_t ui32NextHPIdx;
uint32_t ui32LastHPIdxProcessed;
am_hal_iom_dma_entry_t *pHPTransactions;
// Max pending transactions based on NB Buffer size
uint32_t ui32MaxPending;
// Number of back to back transactions with no callbacks
uint32_t ui32NumUnSolicited;
//
// Delay timeout value.
//
uint32_t waitTimeout;
//
// Configured clock time.
//
uint32_t ui32BitTimeTicks;
//
// IOM register state for power down save/restore.
//
am_hal_iom_register_state_t registerState;
uint8_t dcx[AM_HAL_IOM_MAX_CS_SPI + 1];
} am_hal_iom_state_t;
//*****************************************************************************
//
// Globals
//
//*****************************************************************************
am_hal_iom_state_t g_IOMhandles[AM_REG_IOM_NUM_MODULES];
//*****************************************************************************
//
// Internal Functions.
//
//*****************************************************************************
static uint32_t
get_pause_val(am_hal_iom_state_t *pIOMState, uint32_t pause)
{
uint32_t retval;
switch (pIOMState->block)
{
case 1:
// Pause the CQ till the whole block is built
retval = pause | AM_HAL_IOM_CQP_PAUSE_DEFAULT | AM_HAL_IOM_PAUSE_FLAG_BLOCK;
pIOMState->block = 2;
break;
case 2:
// No pausing allowed
retval = AM_HAL_IOM_PAUSE_DEFAULT;
break;
default: // case 0
retval = pause | AM_HAL_IOM_CQP_PAUSE_DEFAULT;
}
return retval;
}
//*****************************************************************************
//
// Function to build the CMD value.
// Returns the CMD value, but does not set the CMD register.
//
// The OFFSETHI register must still be handled by the caller, e.g.
// AM_REGn(IOM, ui32Module, OFFSETHI) = (uint16_t)(ui32Offset >> 8);
//
//*****************************************************************************
static uint32_t
build_cmd(uint32_t ui32CS, uint32_t ui32Dir, uint32_t ui32Cont,
uint32_t ui32Offset, uint32_t ui32OffsetCnt,
uint32_t ui32nBytes)
{
//
// Initialize the CMD variable
//
uint32_t ui32Cmd = 0;
//
// If SPI, we'll need the chip select
//
ui32Cmd |= _VAL2FLD(IOM0_CMD_CMDSEL, ui32CS);
//
// Build the CMD with number of bytes and direction.
//
ui32Cmd |= _VAL2FLD(IOM0_CMD_TSIZE, ui32nBytes);
if (ui32Dir == AM_HAL_IOM_RX)
{
ui32Cmd |= _VAL2FLD(IOM0_CMD_CMD, IOM0_CMD_CMD_READ);
}
else
{
ui32Cmd |= _VAL2FLD(IOM0_CMD_CMD, IOM0_CMD_CMD_WRITE);
}
ui32Cmd |= _VAL2FLD(IOM0_CMD_CONT, ui32Cont);
//
// Now add the OFFSETLO and OFFSETCNT information.
//
ui32Cmd |= _VAL2FLD(IOM0_CMD_OFFSETLO, (uint8_t)ui32Offset);
ui32Cmd |= _VAL2FLD(IOM0_CMD_OFFSETCNT, ui32OffsetCnt);
return ui32Cmd;
} // build_cmd()
//*****************************************************************************
//
// Function to build CMD lists.
//
//*****************************************************************************
static void
build_txn_cmdlist(am_hal_iom_state_t *pIOMState,
am_hal_iom_txn_cmdlist_t *pCQEntry,
am_hal_iom_transfer_t *psTransaction)
{
uint32_t ui32Cmd;
uint32_t ui32Module = pIOMState->ui32Module;
uint32_t ui32Dir = psTransaction->eDirection;
uint32_t ui32DMAAddress;
//
// Command for OFFSETHI
//
pCQEntry->ui32OFFSETHIAddr = (uint32_t)&IOMn(ui32Module)->OFFSETHI;
pCQEntry->ui32OFFSETHIVal = (uint16_t)(psTransaction->ui32Instr >> 8);
//
// Command for I2C DEVADDR field in DEVCFG
//
pCQEntry->ui32DEVCFGAddr = (uint32_t)&IOMn(ui32Module)->DEVCFG;
pCQEntry->ui32DEVCFGVal = _VAL2FLD(IOM0_DEVCFG_DEVADDR, psTransaction->uPeerInfo.ui32I2CDevAddr);
//
// Command to disable DMA before writing TOTCOUNT.
//
pCQEntry->ui32DMACFGdis1Addr = (uint32_t)&IOMn(ui32Module)->DMACFG;
pCQEntry->ui32DMACFGdis1Val = 0x0;
//
// Command to set DMATOTALCOUNT
//
pCQEntry->ui32DMATOTCOUNTAddr = (uint32_t)&IOMn(ui32Module)->DMATOTCOUNT;
pCQEntry->ui32DMATOTCOUNTVal = psTransaction->ui32NumBytes;
//
// Command to set DMATARGADDR
//
pCQEntry->ui32DMATARGADDRAddr = (uint32_t)&IOMn(ui32Module)->DMATARGADDR;
ui32DMAAddress = (ui32Dir == AM_HAL_IOM_TX) ? (uint32_t)psTransaction->pui32TxBuffer : (uint32_t)psTransaction->pui32RxBuffer;
pCQEntry->ui32DMATARGADDRVal = ui32DMAAddress;
//
// Command to set DMACFG to start the DMA operation
//
pCQEntry->ui32DMACFGAddr = (uint32_t)&IOMn(ui32Module)->DMACFG;
pCQEntry->ui32DMACFGVal =
_VAL2FLD(IOM0_DMACFG_DMAPRI, psTransaction->ui8Priority) |
_VAL2FLD(IOM0_DMACFG_DMADIR, ui32Dir == AM_HAL_IOM_TX ? 1 : 0);
if (psTransaction->ui32NumBytes)
{
pCQEntry->ui32DMACFGVal |= IOM0_DMACFG_DMAEN_Msk;
}
// CMDRPT register has been repurposed for DCX
pCQEntry->ui32DCXAddr = (uint32_t)&IOMn(ui32Module)->DCX;
pCQEntry->ui32DCXVal = (pIOMState->eInterfaceMode == AM_HAL_IOM_SPI_MODE) ? pIOMState->dcx[psTransaction->uPeerInfo.ui32SpiChipSelect] : 0;
//
// Command to start the transfer.
//
ui32Cmd = pIOMState->eInterfaceMode == AM_HAL_IOM_SPI_MODE ?
psTransaction->uPeerInfo.ui32SpiChipSelect : 0;
ui32Cmd = build_cmd(ui32Cmd, // ChipSelect
ui32Dir, // ui32Dir
psTransaction->bContinue, // ui32Cont
psTransaction->ui32Instr, // ui32Offset
psTransaction->ui32InstrLen, // ui32OffsetCnt
psTransaction->ui32NumBytes); // ui32Bytes
pCQEntry->ui32CMDAddr = (uint32_t)&IOMn(ui32Module)->CMD;
pCQEntry->ui32CMDVal = ui32Cmd;
pCQEntry->ui32PAUSENAddr = pCQEntry->ui32PAUSEN2Addr = (uint32_t)&IOMn(ui32Module)->CQPAUSEEN;
pCQEntry->ui32PAUSEEN2Val = AM_HAL_IOM_PAUSE_DEFAULT;
pCQEntry->ui32PAUSEENVal = get_pause_val(pIOMState, psTransaction->ui32PauseCondition);
pCQEntry->ui32SETCLRVal = psTransaction->ui32StatusSetClr;
pCQEntry->ui32SETCLRAddr = (uint32_t)&IOMn(ui32Module)->CQSETCLEAR;
} // build_txn_cmdlist()
//*****************************************************************************
//
// enable_submodule() - Utilizes the built-in fields that indicate whether which
// submodule is supported, then enables that submodule.
//
// Input: ui32Type = 0, set for SPI.
// ui32Type = 1, set for I2C.
//
//*****************************************************************************
static void
enable_submodule(uint32_t ui32Module, uint32_t ui32Type)
{
if ( IOMn(ui32Module)->SUBMODCTRL_b.SMOD0TYPE == ui32Type )
{
IOMn(ui32Module)->SUBMODCTRL =
_VAL2FLD(IOM0_SUBMODCTRL_SMOD1EN, 0) |
_VAL2FLD(IOM0_SUBMODCTRL_SMOD0EN, 1);
}
else
{
IOMn(ui32Module)->SUBMODCTRL =
_VAL2FLD(IOM0_SUBMODCTRL_SMOD1EN, 1) |
_VAL2FLD(IOM0_SUBMODCTRL_SMOD0EN, 0);
}
} // enable_submodule()
//*****************************************************************************
//
// Error handling.
//
//*****************************************************************************
uint32_t
internal_iom_get_int_err(uint32_t ui32Module, uint32_t ui32IntStatus)
{
//
// Map the INTSTAT bits for transaction status
//
uint32_t ui32Status = AM_HAL_STATUS_SUCCESS;
//
// Let's accumulate the errors
//
ui32IntStatus |= IOMn(ui32Module)->INTSTAT;
if (ui32IntStatus & AM_HAL_IOM_INT_SWERR)
{
// Error in hardware command issued or illegal access by SW
ui32Status = AM_HAL_IOM_ERR_INVALID_OPER;
}
else if (ui32IntStatus & AM_HAL_IOM_INT_I2CARBERR)
{
// Loss of I2C multi-master arbitration
ui32Status = AM_HAL_IOM_ERR_I2C_ARB;
}
else if (ui32IntStatus & AM_HAL_IOM_INT_NAK)
{
// I2C NAK
ui32Status = AM_HAL_IOM_ERR_I2C_NAK;
}
else if (ui32IntStatus & AM_HAL_IOM_INT_INTERR)
{
// Other Error
ui32Status = AM_HAL_STATUS_FAIL;
}
return ui32Status;
} // internal_iom_get_int_err()
static void
internal_iom_reset_on_error(am_hal_iom_state_t *pIOMState, uint32_t ui32IntMask)
{
uint32_t iterationsToWait = 2 * pIOMState->ui32BitTimeTicks; // effectively > 6 clocks
uint32_t ui32Module = pIOMState->ui32Module;
uint32_t curIntCfg = IOMn(ui32Module)->INTEN;
IOMn(ui32Module)->INTEN = 0;
// Disable interrupts temporarily
if (ui32IntMask & AM_HAL_IOM_INT_DERR)
{
if ((IOMn(ui32Module)->DMACFG & IOM0_DMACFG_DMADIR_Msk) == _VAL2FLD(IOM0_DMACFG_DMADIR, IOM0_DMACFG_DMADIR_M2P))
{
// Write
uint32_t dummy = 0xDEADBEEF;
uint32_t numBytesRemaining = IOMn(ui32Module)->DMATOTCOUNT;
while (numBytesRemaining)
{
if (IOMn(ui32Module)->FIFOPTR_b.FIFO0REM >= 4)
{
// Write one 4-byte word to FIFO
IOMn(ui32Module)->FIFOPUSH = dummy;
if (numBytesRemaining > 4)
{
numBytesRemaining -= 4;
}
else
{
break;
}
}
}
// Now wait for command to finish
while ((IOMn(ui32Module)->STATUS & (IOM0_STATUS_IDLEST_Msk | IOM0_STATUS_CMDACT_Msk)) != IOM0_STATUS_IDLEST_Msk);
}
else
{
// Read
// Let command finish
while (IOMn(ui32Module)->STATUS_b.CMDACT)
{
while (IOMn(ui32Module)->FIFOPTR_b.FIFO1SIZ >= 4)
{
// Read one 4-byte word from FIFO
IOMn(ui32Module)->FIFOPOP;
#if MANUAL_POP
IOMn(ui32Module)->FIFOPOP = 0x11111111;
#endif
}
}
// Now wait for command to finish
while ((IOMn(ui32Module)->STATUS & (IOM0_STATUS_IDLEST_Msk | IOM0_STATUS_CMDACT_Msk)) != IOM0_STATUS_IDLEST_Msk);
// Flush any remaining data from FIFO
while (IOMn(ui32Module)->FIFOPTR_b.FIFO1SIZ)
{
while (IOMn(ui32Module)->FIFOPTR_b.FIFO1SIZ >= 4)
{
// Read one 4-byte word from FIFO
IOMn(ui32Module)->FIFOPOP;
#if MANUAL_POP
IOMn(ui32Module)->FIFOPOP = 0x11111111;
#endif
}
}
}
}
if (ui32IntMask & AM_HAL_IOM_INT_NAK)
{
//
// Wait for Idle
//
while ((IOMn(ui32Module)->STATUS & (IOM0_STATUS_IDLEST_Msk | IOM0_STATUS_CMDACT_Msk)) != IOM0_STATUS_IDLEST_Msk);
//
// Reset Submodule & FIFO
//
// Disable the submodules
//
IOMn(ui32Module)->SUBMODCTRL_b.SMOD1EN = 0;
// Reset Fifo
IOMn(ui32Module)->FIFOCTRL_b.FIFORSTN = 0;
// Wait for few IO clock cycles
am_hal_flash_delay(iterationsToWait);
IOMn(ui32Module)->FIFOCTRL_b.FIFORSTN = 1;
// Enable submodule
IOMn(ui32Module)->SUBMODCTRL_b.SMOD1EN = 1;
}
IOMn(ui32Module)->INTCLR = AM_HAL_IOM_INT_ALL;
// Restore interrupts
IOMn(ui32Module)->INTEN = curIntCfg;
}
//*****************************************************************************
// compute_freq()
//*****************************************************************************
//
// Compute the interface frequency based on the given parameters
//
static uint32_t
compute_freq(uint32_t ui32HFRCfreqHz,
uint32_t ui32Fsel, uint32_t ui32Div3,
uint32_t ui32DivEn, uint32_t ui32TotPer)
{
uint32_t ui32Denomfinal, ui32ClkFreq;
ui32Denomfinal = ((1 << (ui32Fsel - 1)) * (1 + ui32Div3 * 2) * (1 + ui32DivEn * (ui32TotPer)));
ui32ClkFreq = (ui32HFRCfreqHz) / ui32Denomfinal; // Compute the set frequency value
ui32ClkFreq += (((ui32HFRCfreqHz) % ui32Denomfinal) > (ui32Denomfinal / 2)) ? 1 : 0;
return ui32ClkFreq;
} // compute_freq()
//*****************************************************************************
// onebit()
//*****************************************************************************
//
// A power of 2?
// Return true if ui32Value has exactly 1 bit set, otherwise false.
//
static bool
onebit(uint32_t ui32Value)
{
return ui32Value && !(ui32Value & (ui32Value - 1));
} // onebit()
//*****************************************************************************
//
// iom_get_interface_clock_cfg()
//
// Returns the proper settings for the CLKCFG register.
//
// ui32FreqHz - The desired interface frequency in Hz.
//
// Given a desired serial interface clock frequency, this function computes
// the appropriate settings for the various fields in the CLKCFG register
// and returns the 32-bit value that should be written to that register.
// The actual interface frequency may be slightly lower than the specified
// frequency, but the actual frequency is also returned.
//
// Note A couple of criteria that this algorithm follow are:
// 1. For power savings, choose the highest FSEL possible.
// 2. Use DIV3 when possible rather than DIVEN.
//
// Return An unsigned 64-bit value.
// The lower 32-bits represent the value to use to set CLKCFG.
// The upper 32-bits represent the actual frequency (in Hz) that will result
// from setting CLKCFG with the lower 32-bits.
//
// 0 (64 bits) = error. Note that the caller must check the entire 64 bits.
// It is not an error if only the low 32-bits are 0 (this is a valid value).
// But the entire 64 bits returning 0 is an error.
//!
//*****************************************************************************
static
uint64_t iom_get_interface_clock_cfg(uint32_t ui32FreqHz, uint32_t ui32Phase )
{
uint32_t ui32Fsel, ui32Div3, ui32DivEn, ui32TotPer, ui32LowPer;
uint32_t ui32Denom, ui32v1, ui32Denomfinal, ui32ClkFreq, ui32ClkCfg;
uint32_t ui32HFRCfreqHz;
int32_t i32Div, i32N;
if ( ui32FreqHz == 0 )
{
return 0;
}
//
// Set the HFRC clock frequency.
//
ui32HFRCfreqHz = AM_HAL_CLKGEN_FREQ_MAX_HZ;
//
// Compute various parameters used for computing the optimal CLKCFG setting.
//
i32Div = (ui32HFRCfreqHz / ui32FreqHz) + ((ui32HFRCfreqHz % ui32FreqHz) ? 1 : 0); // Round up (ceiling)
//
// Compute N (count the number of LS zeros of Div) = ctz(Div) = log2(Div & (-Div))
//
i32N = 31 - AM_INSTR_CLZ((i32Div & (-i32Div)));
if ( i32N > 6 )
{
i32N = 6;
}
ui32Div3 = ( (ui32FreqHz < (ui32HFRCfreqHz / 16384)) ||
( ((ui32FreqHz >= (ui32HFRCfreqHz / 3)) &&
(ui32FreqHz <= ((ui32HFRCfreqHz / 2) - 1)) ) ) ) ? 1 : 0;
ui32Denom = ( 1 << i32N ) * ( 1 + (ui32Div3 * 2) );
ui32TotPer = i32Div / ui32Denom;
ui32TotPer += (i32Div % ui32Denom) ? 1 : 0;
ui32v1 = 31 - AM_INSTR_CLZ(ui32TotPer); // v1 = log2(TotPer)
ui32Fsel = (ui32v1 > 7) ? ui32v1 + i32N - 7 : i32N;
ui32Fsel++;
if ( ui32Fsel > 7 )
{
//
// This is an error, can't go that low.
//
return 0;
}
if ( ui32v1 > 7 )
{
ui32DivEn = ui32TotPer; // Save TotPer for the round up calculation
ui32TotPer = ui32TotPer>>(ui32v1-7);
ui32TotPer += ((ui32DivEn) % (1 << (ui32v1 - 7))) ? 1 : 0;
}
ui32DivEn = ( (ui32FreqHz >= (ui32HFRCfreqHz / 4)) ||
((1 << (ui32Fsel - 1)) == i32Div) ) ? 0 : 1;
if (ui32Phase == 1)
{
ui32LowPer = (ui32TotPer - 2) / 2; // Longer high phase
}
else
{
ui32LowPer = (ui32TotPer - 1) / 2; // Longer low phase
}
ui32ClkCfg = _VAL2FLD(IOM0_CLKCFG_FSEL, ui32Fsel) |
_VAL2FLD(IOM0_CLKCFG_DIV3, ui32Div3) |
_VAL2FLD(IOM0_CLKCFG_DIVEN, ui32DivEn) |
_VAL2FLD(IOM0_CLKCFG_LOWPER, ui32LowPer) |
_VAL2FLD(IOM0_CLKCFG_TOTPER, ui32TotPer - 1);
//
// Now, compute the actual frequency, which will be returned.
//
ui32ClkFreq = compute_freq(ui32HFRCfreqHz, ui32Fsel, ui32Div3, ui32DivEn, ui32TotPer - 1);
//
// Determine if the actual frequency is a power of 2 (MHz).
//
if ( (ui32ClkFreq % 250000) == 0 )
{
//
// If the actual clock frequency is a power of 2 ranging from 250KHz up,
// we can simplify the CLKCFG value using DIV3 (which also results in a
// better duty cycle).
//
ui32Denomfinal = ui32ClkFreq / (uint32_t)250000;
if ( onebit(ui32Denomfinal) )
{
//
// These configurations can be simplified by using DIV3. Configs
// using DIV3 have a 50% duty cycle, while those from DIVEN will
// have a 66/33 duty cycle.
//
ui32TotPer = ui32LowPer = ui32DivEn = 0;
ui32Div3 = 1;
//
// Now, compute the return values.
//
ui32ClkFreq = compute_freq(ui32HFRCfreqHz, ui32Fsel, ui32Div3, ui32DivEn, ui32TotPer);
ui32ClkCfg = _VAL2FLD(IOM0_CLKCFG_FSEL, ui32Fsel) |
_VAL2FLD(IOM0_CLKCFG_DIV3, 1) |
_VAL2FLD(IOM0_CLKCFG_DIVEN, 0) |
_VAL2FLD(IOM0_CLKCFG_LOWPER, 0) |
_VAL2FLD(IOM0_CLKCFG_TOTPER, 0);
}
}
return ( ((uint64_t)ui32ClkFreq) << 32) | (uint64_t)ui32ClkCfg;
} //iom_get_interface_clock_cfg()
//*****************************************************************************
//
//! @brief Initializes the IOM Command Queue.
//!
//! @param handle - handle for the interface.
//! @param ui32Length - length of the SRAM Command Queue buffer in words.
//! @param pTCB - pointer to the SRAM to use for the Command Queue.
//!
//! This function initializes the global command queue structure.
//!
//! @return HAL status of the operation.
//
//*****************************************************************************
uint32_t
am_hal_iom_CQInit(void *pHandle, uint32_t ui32Length,
uint32_t *pTCB)
{
am_hal_cmdq_cfg_t cqCfg;
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t *)pHandle;
uint32_t ui32Module = pIOMState->ui32Module;
uint32_t ui32Status = AM_HAL_STATUS_SUCCESS;
pIOMState->pCmdQHdl = NULL;
pIOMState->ui32MaxTransactions = 0;
pIOMState->ui32NumUnSolicited = 0;
cqCfg.pCmdQBuf = pTCB;
cqCfg.cmdQSize = ui32Length / 2;
cqCfg.priority = AM_HAL_CMDQ_PRIO_HI;
ui32Status = am_hal_cmdq_init((am_hal_cmdq_if_e)(AM_HAL_CMDQ_IF_IOM0 + ui32Module),
&cqCfg, &pIOMState->pCmdQHdl);
if (ui32Status == AM_HAL_STATUS_SUCCESS)
{
pIOMState->ui32MaxTransactions = AM_HAL_IOM_MAX_PENDING_TRANSACTIONS;
}
return ui32Status;
} // am_hal_iom_CQInit()
//*****************************************************************************
//
//! @brief Resets the IOM Command Queue.
//!
//! @param ui32Module - IOM instance.
//!
//! This function resets the global command queue structure.
//!
//! @return HAL status of the operation.
//
//
//*****************************************************************************
uint32_t
am_hal_IOM_CQReset(void *pHandle)
{
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t *)pHandle;
if (pIOMState->pCmdQHdl)
{
am_hal_cmdq_term(pIOMState->pCmdQHdl, true);
pIOMState->pCmdQHdl = NULL;
}
//
// Return the status.
//
return AM_HAL_STATUS_SUCCESS;
} // am_hal_IOM_CQReset()
//*****************************************************************************
//
//! @brief Adds a transaction the IOM Command Queue.
//!
//! @param handle - handle for the interface.
//! @param pTransaction - transaction to add to the CQ
//! @param pfnCallback - pointer the callback function to be executed when
//! transaction is complete.
//!
//! This function copies data from the IOM FIFO into the array \e pui32Data.
//! This is how input data from SPI or I2C transactions may be retrieved.
//!
//!
//! @return HAL status of the operation.
//
//
//*****************************************************************************
uint32_t
am_hal_iom_CQAddTransaction(void *pHandle,
am_hal_iom_transfer_t *psTransaction,
am_hal_iom_callback_t pfnCallback,
void *pCallbackCtxt)
{
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t *)pHandle;
am_hal_iom_txn_cmdlist_t *pCQEntry;
am_hal_cmdq_entry_t *pCQBlock;
uint32_t index;
//
// Check to see if there is enough room in the CQ
//
if ((pIOMState->ui32NumPendTransactions == AM_HAL_IOM_MAX_PENDING_TRANSACTIONS) ||
(am_hal_cmdq_alloc_block(pIOMState->pCmdQHdl, sizeof(am_hal_iom_txn_cmdlist_t) / 8, &pCQBlock, &index)))
{
return AM_HAL_STATUS_OUT_OF_RANGE;
}
pCQEntry = (am_hal_iom_txn_cmdlist_t *)pCQBlock;
build_txn_cmdlist(pIOMState, pCQEntry, psTransaction);
//
// Because we set AM_HAL_IOM_CQUPD_INT_FLAG, an interrupt will occur once
// we reach this point in the Command Queue. In the service routine, we'll
// look for the appropriate callback.
//
// If ENDIDX has been reached, the CQ will pause here. Otherwise will
// continue with the next CQ entry.
//
//
// Store the callback function pointer.
//
pIOMState->pfnCallback[index & (AM_HAL_IOM_MAX_PENDING_TRANSACTIONS - 1)] = pfnCallback;
pIOMState->pCallbackCtxt[index & (AM_HAL_IOM_MAX_PENDING_TRANSACTIONS - 1)] = pCallbackCtxt;
return AM_HAL_STATUS_SUCCESS;
} // am_hal_iom_CQAddTransaction()
//*****************************************************************************
//
//! @brief Enable the Command Queue operation.
//!
//! @param handle - handle for the interface.
//!
//! This function enables Command Queue operation.
//!
//!
//! @return HAL status of the operation.
//
//
//*****************************************************************************
uint32_t
am_hal_iom_CQEnable(void *pHandle)
{
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t *)pHandle;
if (0 == pIOMState->ui32NumPendTransactions)
{
uint32_t *pCqAddr = (uint32_t *)IOMn(pIOMState->ui32Module)->CQADDR;
// When CQ is enabled with nothing there - it always executes the first command
// insert dummy command
*pCqAddr = (uint32_t) &IOMn(pIOMState->ui32Module)->CQADDR;
*(pCqAddr + 1) = (uint32_t)pCqAddr;
}
//
// Enable the Command Queue operation
//
return am_hal_cmdq_enable(pIOMState->pCmdQHdl);
} // am_hal_iom_CQEnable()
//*****************************************************************************
//
//! @brief Disable the Command Queue operation.
//!
//! @param handle - handle for the interface.
//!
//! This function disables the Command Queue operation.
//!
//!
//! @return HAL status of the operation.
//
//
//*****************************************************************************
uint32_t
am_hal_iom_CQDisable(void *pHandle)
{
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t *)pHandle;
//
// Disable the Command Queue operation
//
return am_hal_cmdq_disable(pIOMState->pCmdQHdl);
} // am_hal_iom_CQDisable()
//*****************************************************************************
//
//! @brief Dummy Callback.
//!
//*****************************************************************************
static void iom_dummy_callback(void *pCallbackCtxt, uint32_t status)
{
// Dummy - Do nothing
}
//*****************************************************************************
//
//! @brief Callback when end of sequence is reached.
//!
//*****************************************************************************
static void iom_seq_loopback(void *pCallbackCtxt, uint32_t status)
{
// Reset the state to allow serving callbacks for next set
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t *)pCallbackCtxt;
pIOMState->ui32NumPendTransactions = pIOMState->ui32NumSeqTransactions + 1;
pIOMState->ui32LastIdxProcessed = 0;
pIOMState->bRestart = true;
// Now resume the CQ - to finish loopback
// Resume the CQ
IOMn(pIOMState->ui32Module)->CQSETCLEAR = AM_HAL_IOM_SC_UNPAUSE_SEQLOOP;
}
//*****************************************************************************
//
//! @brief Pause the Command Queue.
//!
//! @param pIOMState - pointer to the IOM internal state.
//!
//! This function pauses the Command Queue operation.
//!
//! @return HAL status of the operation.
//
//*****************************************************************************
static uint32_t iom_cq_pause(am_hal_iom_state_t *pIOMState)
{
uint32_t status = AM_HAL_STATUS_SUCCESS;
uint32_t ui32usMaxDelay = AM_HAL_IOM_MAX_PAUSE_DELAY;
// Pause the CQ
IOMn(pIOMState->ui32Module)->CQSETCLEAR = AM_HAL_IOM_SC_PAUSE_CQ;
// It is possible that CQ is disabled once the last transaction is processed
while ( IOMn(pIOMState->ui32Module)->CQCFG_b.CQEN )
{
// Need to make sure we're paused at a designated pause point
if ( IOMn(pIOMState->ui32Module)->CQSTAT_b.CQPAUSED && (IOMn(pIOMState->ui32Module)->CQPAUSEEN & AM_HAL_IOM_PAUSE_FLAG_CQ) )
{
break;
}
if ( ui32usMaxDelay-- )
{
//
// Call the BOOTROM cycle function to delay for about 1 microsecond.
//
am_hal_flash_delay( FLASH_CYCLES_US(1) );
}
else
{
return AM_HAL_STATUS_TIMEOUT;
}
}
if (status == AM_HAL_STATUS_SUCCESS)
{
// Now that CQ is guaranteed to not progress further - we need to still wait in case the current CQ entry
// resulted in a DMA state....need to make sure we finish the current DMA
status = am_hal_flash_delay_status_check(AM_HAL_IOM_MAX_PAUSE_DELAY,
(uint32_t)&IOMn(pIOMState->ui32Module)->DMASTAT,
IOM0_DMASTAT_DMATIP_Msk,
_VAL2FLD(IOM0_DMASTAT_DMATIP, 0),
true);
}
return status;
}
//*****************************************************************************
//
//! @brief Program the DMA directly.
//!
//! @param pHandle - pointer the IOM instance handle.
//!
//! This function pauses the Command Queue operation.
//!
//! @return HAL status of the operation.
//
//*****************************************************************************
static void
program_dma(void *pHandle)
{
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t *)pHandle;
uint32_t ui32Module = pIOMState->ui32Module;
uint32_t index = (pIOMState->ui32LastHPIdxProcessed + 1) % pIOMState->ui32MaxHPTransactions;
am_hal_iom_dma_entry_t *pDMAEntry = &pIOMState->pHPTransactions[index];
//
// OFFSETHI
//
IOMn(ui32Module)->OFFSETHI = pDMAEntry->ui32OFFSETHIVal;
//
// I2C DEVADDR field in DEVCFG
//
IOMn(ui32Module)->DEVCFG = pDMAEntry->ui32DEVCFGVal;
//
// disable DMA before writing TOTCOUNT.
//
IOMn(ui32Module)->DMACFG = 0x0;
//
// set DMATOTALCOUNT
//
IOMn(ui32Module)->DMATOTCOUNT = pDMAEntry->ui32DMATOTCOUNTVal;
//
// set DMATARGADDR
//
IOMn(ui32Module)->DMATARGADDR = pDMAEntry->ui32DMATARGADDRVal;
//
// Command to set DMACFG to start the DMA operation
//
IOMn(ui32Module)->DMACFG = pDMAEntry->ui32DMACFGVal;
//
// Command to start the transfer.
//
IOMn(ui32Module)->CMD = pDMAEntry->ui32CMDVal;
}
//*****************************************************************************
//
//! @brief Schedule a high priority transaction.
//!
//! @param pIOMState - pointer to the IOM internal state.
//! @param numTrans - number of transaction to schedule in a block.
//!
//! This function pauses the Command Queue operation.
//!
//! @return HAL status of the operation.
//
//*****************************************************************************
static uint32_t
sched_hiprio(am_hal_iom_state_t *pIOMState, uint32_t numTrans)
{
uint32_t ui32NumPend;
uint32_t ui32Status = AM_HAL_STATUS_SUCCESS;
//
// Start a critical section.
//
AM_CRITICAL_BEGIN
ui32NumPend = pIOMState->ui32NumHPEntries;
pIOMState->ui32NumHPEntries += numTrans;
//
// End the critical section.
//
AM_CRITICAL_END
if (0 == ui32NumPend)
{
// Force CQ to Pause
ui32Status = iom_cq_pause(pIOMState);
if (ui32Status != AM_HAL_STATUS_SUCCESS)
{
return ui32Status;
}
pIOMState->ui32TxnInt = 0;
// Clear & Enable DMACMP interrupt
IOMn(pIOMState->ui32Module)->INTCLR = AM_HAL_IOM_INT_DCMP | AM_HAL_IOM_INT_CMDCMP;
IOMn(pIOMState->ui32Module)->INTEN |= AM_HAL_IOM_INT_DCMP | AM_HAL_IOM_INT_CMDCMP;
pIOMState->bHP = true;
//
// Program the DMA
//
program_dma(pIOMState);
}
return ui32Status;
} // sched_hiprio()
//*****************************************************************************
//
//! @brief Add a high priority transaction.
//!
//! @param pHandle - pointer the IOM instance handle.
//! @param psTransaction - pointer to IOM transaction.
//! @param pfnCallback - pointer to the callback for transaction (could be NULL).
//! @param pCallbackCtxt - pointer to the context to the callback (could be NULL).
//!
//! This function adds a function to the internal high priority transaction queue.
//!
//! @return HAL status of the operation.
//
//*****************************************************************************
static uint32_t
iom_add_hp_transaction(void *pHandle,
am_hal_iom_transfer_t *psTransaction,
am_hal_iom_callback_t pfnCallback,
void *pCallbackCtxt)
{
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t *)pHandle;
am_hal_iom_dma_entry_t *pDMAEntry;
uint32_t ui32Dir = psTransaction->eDirection;
uint32_t ui32SRAMAddress;
uint32_t index = pIOMState->ui32NextHPIdx % pIOMState->ui32MaxHPTransactions;
//
// Check to see if there is enough room in the queue
//
if ( pIOMState->ui32NumHPEntries == pIOMState->ui32MaxHPTransactions )
{
return AM_HAL_STATUS_OUT_OF_RANGE;
}
ui32SRAMAddress = (ui32Dir == AM_HAL_IOM_TX) ? (uint32_t)psTransaction->pui32TxBuffer : (uint32_t)psTransaction->pui32RxBuffer;
pDMAEntry = &pIOMState->pHPTransactions[index];
pDMAEntry->ui32OFFSETHIVal = (uint16_t)(psTransaction->ui32Instr >> 8);
pDMAEntry->ui32DEVCFGVal = _VAL2FLD(IOM0_DEVCFG_DEVADDR, psTransaction->uPeerInfo.ui32I2CDevAddr);
pDMAEntry->ui32DMATARGADDRVal = ui32SRAMAddress;
pDMAEntry->ui32DMATOTCOUNTVal = psTransaction->ui32NumBytes;
pDMAEntry->ui32DMACFGVal =
_VAL2FLD(IOM0_DMACFG_DMAPRI, psTransaction->ui8Priority) |
_VAL2FLD(IOM0_DMACFG_DMADIR, ui32Dir == AM_HAL_IOM_TX ? 1 : 0);
if (psTransaction->ui32NumBytes)
{
pDMAEntry->ui32DMACFGVal |= IOM0_DMACFG_DMAEN_Msk;
}
//
// Command to start the transfer.
//
pDMAEntry->ui32CMDVal = build_cmd((pIOMState->eInterfaceMode == AM_HAL_IOM_SPI_MODE) ? psTransaction->uPeerInfo.ui32SpiChipSelect : 0, // ChipSelect
ui32Dir, // ui32Dir
psTransaction->bContinue, // ui32Cont
psTransaction->ui32Instr, // ui32Offset
psTransaction->ui32InstrLen, // ui32OffsetCnt
psTransaction->ui32NumBytes); // ui32Bytes
pDMAEntry->pfnCallback = pfnCallback;
pDMAEntry->pCallbackCtxt = pCallbackCtxt;
pIOMState->ui32NextHPIdx++;
return AM_HAL_STATUS_SUCCESS;
} // iom_add_hp_transaction()
//*****************************************************************************
//
//! @brief Validate an IOM transaction.
//!
//! @param pIOMState - pointer to the IOM internal state.
//! @param psTransaction - pointer to IOM transaction.
//! @param bBlocking - is this a blocking transaction?
//!
//! This function validates.
//!
//! @return HAL status of the operation.
//
//*****************************************************************************
uint32_t
validate_transaction(am_hal_iom_state_t *pIOMState,
am_hal_iom_transfer_t *psTransaction,
bool bBlocking)
{
uint32_t ui32Offset, ui32OffsetCnt, ui32Dir, ui32Bytes;
ui32Offset = psTransaction->ui32Instr;
ui32OffsetCnt = psTransaction->ui32InstrLen;
ui32Dir = psTransaction->eDirection;
ui32Bytes = psTransaction->ui32NumBytes;
//
// Validate parameters
//
if ( (ui32OffsetCnt > AM_HAL_IOM_MAX_OFFSETSIZE) ||
(ui32Offset & (0xFFFFFFFF << (ui32OffsetCnt*8))) ||
(ui32Bytes && (ui32Dir != AM_HAL_IOM_TX) && (psTransaction->pui32RxBuffer == NULL)) ||
(ui32Bytes && (ui32Dir != AM_HAL_IOM_RX) && (psTransaction->pui32TxBuffer == NULL)) ||
((pIOMState->eInterfaceMode == AM_HAL_IOM_I2C_MODE) &&
(psTransaction->ui32NumBytes > AM_HAL_IOM_MAX_TXNSIZE_I2C)) ||
((pIOMState->eInterfaceMode == AM_HAL_IOM_SPI_MODE) &&
((psTransaction->uPeerInfo.ui32SpiChipSelect > AM_HAL_IOM_MAX_CS_SPI) ||
(psTransaction->ui32NumBytes > AM_HAL_IOM_MAX_TXNSIZE_SPI))) )
{
return AM_HAL_STATUS_INVALID_ARG;
}
if (!bBlocking)
{
if (psTransaction->ui32PauseCondition & AM_HAL_IOM_PAUSE_FLAG_RESV)
{
return AM_HAL_STATUS_INVALID_ARG;
}
if (psTransaction->ui32StatusSetClr & AM_HAL_IOM_SC_RESV_MASK)
{
return AM_HAL_STATUS_INVALID_ARG;
}
}
return AM_HAL_STATUS_SUCCESS;
} // validate_transaction()
//*****************************************************************************
//
// IOM uninitialize function
//
//*****************************************************************************
uint32_t
am_hal_iom_uninitialize(void *pHandle)
{
uint32_t status = AM_HAL_STATUS_SUCCESS;
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t*)pHandle;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOM_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
if (pIOMState->prefix.s.bEnable)
{
am_hal_iom_disable(pHandle);
}
pIOMState->prefix.s.bInit = false;
//
// Return the status.
//
return status;
} // am_hal_iom_uninitialize()
//*****************************************************************************
//
// IOM initialization function
//
//*****************************************************************************
uint32_t
am_hal_iom_initialize(uint32_t ui32Module, void **ppHandle)
{
// Compile time check to ensure ENTRY_SIZE macros are defined correctly
// incorrect definition will cause divide by 0 error at build time
am_ct_assert((sizeof(am_hal_iom_txn_cmdlist_t) + 8) == AM_HAL_IOM_CQ_ENTRY_SIZE);
am_ct_assert(sizeof(am_hal_iom_dma_entry_t) == AM_HAL_IOM_HIPRIO_ENTRY_SIZE);
#ifndef AM_HAL_DISABLE_API_VALIDATION
//
// Validate the module number
//
if ( ui32Module >= AM_REG_IOM_NUM_MODULES )
{
return AM_HAL_STATUS_OUT_OF_RANGE;
}
if (ppHandle == NULL)
{
return AM_HAL_STATUS_INVALID_ARG;
}
if (g_IOMhandles[ui32Module].prefix.s.bInit)
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
g_IOMhandles[ui32Module].prefix.s.bInit = true;
g_IOMhandles[ui32Module].prefix.s.bEnable = false;
g_IOMhandles[ui32Module].prefix.s.magic = AM_HAL_MAGIC_IOM;
//
// Initialize the handle.
//
g_IOMhandles[ui32Module].ui32Module = ui32Module;
//
// Return the handle.
//
*ppHandle = (void *)&g_IOMhandles[ui32Module];
//
// Return the status
//
return AM_HAL_STATUS_SUCCESS;
} // am_hal_iom_initialize()
//*****************************************************************************
//
// IOM enable function
//
//*****************************************************************************
uint32_t
am_hal_iom_enable(void *pHandle)
{
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t*)pHandle;
uint32_t status = AM_HAL_STATUS_SUCCESS;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOM_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
if (pIOMState->prefix.s.bEnable)
{
return AM_HAL_STATUS_SUCCESS;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
// Enable submodule
#if 1
enable_submodule(pIOMState->ui32Module, ((pIOMState->eInterfaceMode == AM_HAL_IOM_SPI_MODE) ? 0 : 1));
#endif
#if MANUAL_POP
IOMn(pIOMState->ui32Module)->FIFOCTRL_b.POPWR = 1;
#endif
//
// If Enable the Command Queue
//
if ( pIOMState->pNBTxnBuf )
{
pIOMState->ui32NumPendTransactions = 0;
pIOMState->ui32LastIdxProcessed = 0;
// Initialize Flags used to force CQ Pause
IOMn(pIOMState->ui32Module)->CQSETCLEAR = AM_HAL_IOM_SC_UNPAUSE_CQ | AM_HAL_IOM_SC_PAUSE_SEQLOOP;
pIOMState->pHPTransactions = NULL;
pIOMState->bHP = false;
pIOMState->block = 0;
pIOMState->ui32NumHPPendingEntries = 0;
pIOMState->ui32NumHPEntries = 0;
pIOMState->eSeq = AM_HAL_IOM_SEQ_NONE;
pIOMState->ui32NumSeqTransactions = 0;
pIOMState->bAutonomous = true;
status = am_hal_iom_CQInit(pIOMState,
pIOMState->ui32NBTxnBufLength,
pIOMState->pNBTxnBuf);
// Initialize the DMA Trigger Setting
//
// DMATRIG, set DTHREN and/or DCMDCMPEN.
// Note - it is recommended that DTHREN always be set.
//
IOMn(pIOMState->ui32Module)->DMATRIGEN = _VAL2FLD(IOM0_DMATRIGEN_DTHREN, 1);
}
if (status == AM_HAL_STATUS_SUCCESS)
{
pIOMState->prefix.s.bEnable = true;
}
//
// We're done, return the status.
//
return status;
} // am_hal_iom_enable()
//*****************************************************************************
//
// IOM disable function
//
//*****************************************************************************
uint32_t
am_hal_iom_disable(void *pHandle)
{
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t*)pHandle;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOM_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
if (!pIOMState->prefix.s.bEnable)
{
return AM_HAL_STATUS_SUCCESS;
}
// Check if we have any pending transactions.
if (pIOMState->ui32NumPendTransactions)
{
return AM_HAL_STATUS_IN_USE;
}
//
// Disable the submodules
//
IOMn(pIOMState->ui32Module)->SUBMODCTRL_b.SMOD0EN = 0;
IOMn(pIOMState->ui32Module)->SUBMODCTRL_b.SMOD1EN = 0;
am_hal_IOM_CQReset(pHandle);
pIOMState->prefix.s.bEnable = false;
//
// Return the status.
//
return AM_HAL_STATUS_SUCCESS;
} // am_hal_iom_disable()
//*****************************************************************************
//
// IOM get status function
//
//*****************************************************************************
uint32_t
am_hal_iom_status_get(void *pHandle, am_hal_iom_status_t *psStatus)
{
uint32_t ui32Module, ui32IomStat;
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t*)pHandle;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOM_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
if (!psStatus)
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = pIOMState->ui32Module;
//
// Begin critical section while we gather status information.
//
AM_CRITICAL_BEGIN
ui32IomStat = IOMn(ui32Module)->STATUS;
psStatus->bStatIdle = _FLD2VAL(IOM0_STATUS_IDLEST, ui32IomStat);
psStatus->bStatErr = _FLD2VAL(IOM0_STATUS_ERR, ui32IomStat);
psStatus->bStatCmdAct = _FLD2VAL(IOM0_STATUS_CMDACT, ui32IomStat);
//
// Return all the bitfields of DMASTAT.
//
psStatus->ui32DmaStat = IOMn(ui32Module)->DMASTAT;
psStatus->ui32MaxTransactions = pIOMState->ui32MaxTransactions;
psStatus->ui32NumPendTransactions = pIOMState->ui32NumPendTransactions;
//
// End the critical section.
//
AM_CRITICAL_END
//
// Return the status.
//
return AM_HAL_STATUS_SUCCESS;
} // am_hal_iom_status_get()
//*****************************************************************************
//
// IOM enable interrupts function
//
//*****************************************************************************
uint32_t
am_hal_iom_interrupt_enable(void *pHandle, uint32_t ui32IntMask)
{
uint32_t ui32Module;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOM_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
if (ui32IntMask & AM_HAL_IOM_INT_THR)
{
return AM_HAL_STATUS_INVALID_ARG; // Threshold Interupt should not be used.
}
ui32Module = ((am_hal_iom_state_t*)pHandle)->ui32Module;
//
// Set the interrupt enables according to the mask.
//
IOMn(ui32Module)->INTEN |= ui32IntMask;
//
// Return the status.
//
return AM_HAL_STATUS_SUCCESS;
} // am_hal_iom_interrupt_enable()
//*****************************************************************************
//
// IOM disable interrupts function
//
//*****************************************************************************
uint32_t
am_hal_iom_interrupt_disable(void *pHandle, uint32_t ui32IntMask)
{
uint32_t ui32Module;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOM_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = ((am_hal_iom_state_t*)pHandle)->ui32Module;
//
// Clear the interrupt enables according to the mask.
//
IOMn(ui32Module)->INTEN &= ~ui32IntMask;
//
// Return the status.
//
return AM_HAL_STATUS_SUCCESS;
} // am_hal_iom_interrupt_disable()
//*****************************************************************************
//
// IOM get interrupt status
//
//*****************************************************************************
uint32_t
am_hal_iom_interrupt_status_get(void *pHandle, bool bEnabledOnly,
uint32_t *pui32IntStatus)
{
uint32_t ui32IntStatus;
uint32_t ui32Module;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if ( !AM_HAL_IOM_CHK_HANDLE(pHandle) )
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
if ( !pui32IntStatus )
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = ((am_hal_iom_state_t*)pHandle)->ui32Module;
ui32IntStatus = IOMn(ui32Module)->INTSTAT;
if ( bEnabledOnly )
{
ui32IntStatus &= IOMn(ui32Module)->INTEN;
}
*pui32IntStatus = ui32IntStatus;
//
// Return the status.
//
return AM_HAL_STATUS_SUCCESS;
} // am_hal_iom_interrupt_status_get()
//*****************************************************************************
//
// IOM interrupt clear
//
//*****************************************************************************
uint32_t
am_hal_iom_interrupt_clear(void *pHandle, uint32_t ui32IntMask)
{
uint32_t ui32Module;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOM_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = ((am_hal_iom_state_t*)pHandle)->ui32Module;
//
// Clear the requested interrupts.
//
IOMn(ui32Module)->INTCLR = ui32IntMask;
//
// Return the status.
//
return AM_HAL_STATUS_SUCCESS;
} // am_hal_iom_interrupt_clear()
//*****************************************************************************
//
// IOM interrupt service routine
//
//*****************************************************************************
uint32_t am_hal_iom_interrupt_service(void *pHandle, uint32_t ui32IntMask)
{
uint32_t ui32Module;
uint32_t ui32Status = AM_HAL_STATUS_SUCCESS;
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t*)pHandle;
uint32_t index;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOM_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = pIOMState->ui32Module;
if (pIOMState->bHP)
{
//
// Accumulate the INTSTAT for this transaction
//
pIOMState->ui32TxnInt |= ui32IntMask;
//
// Check for the command completion
//
if (pIOMState->ui32TxnInt & (AM_HAL_IOM_INT_CMDCMP | AM_HAL_IOM_INT_DERR))
{
//
// We need to wait for the DMA complete as well
// Special case for 0 length DMA - by checking the DMAEN register
//
if ((IOMn(ui32Module)->DMACFG_b.DMAEN == 0) || (pIOMState->ui32TxnInt & (AM_HAL_IOM_INT_DCMP | AM_HAL_IOM_INT_ERR)))
{
// Call the callback
// Need to determine the error, call the callback with proper status
pIOMState->ui32LastHPIdxProcessed++;
pIOMState->ui32NumHPEntries--;
index = pIOMState->ui32LastHPIdxProcessed % pIOMState->ui32MaxHPTransactions;
am_hal_iom_dma_entry_t *pDMAEntry = &pIOMState->pHPTransactions[index];
if ( pDMAEntry->pfnCallback != NULL )
{
pDMAEntry->pfnCallback(pDMAEntry->pCallbackCtxt, internal_iom_get_int_err(ui32Module, pIOMState->ui32TxnInt));
pDMAEntry->pfnCallback = NULL;
}
if (pIOMState->ui32TxnInt & AM_HAL_IOM_INT_ERR)
{
//
// Do Error recovery
// Disable DMA
//
IOMn(ui32Module)->DMACFG_b.DMAEN = 0;
//
// Clear DMAERR in DMASTAT
//
IOMn(ui32Module)->DMASTAT = 0;
//
// Reset Submodule & FIFO
//
internal_iom_reset_on_error(pIOMState, pIOMState->ui32TxnInt & AM_HAL_IOM_INT_ERR);
}
//
// Post next transaction if queue is not empty
//
if (pIOMState->ui32NumHPEntries)
{
//
// Initialize the DMA state machine (clear the DMACPL flag).
//
IOMn(ui32Module)->DMASTAT = 0;
//AM_REGn(IOM, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
pIOMState->ui32TxnInt = 0;
program_dma(pIOMState);
}
else
{
pIOMState->bHP = false;
// Unpause the CQ
// Restore interrupts
IOMn(ui32Module)->INTEN &= ~(AM_HAL_IOM_INT_DCMP | AM_HAL_IOM_INT_CMDCMP);
// Resume the CQ
IOMn(ui32Module)->CQSETCLEAR = AM_HAL_IOM_SC_UNPAUSE_CQ;
}
}
}
return AM_HAL_STATUS_SUCCESS;
}
if (pIOMState->ui32NumPendTransactions)
{
am_hal_cmdq_status_t status;
//
// Get the current and last indexes.
//
if (pIOMState->pCmdQHdl && ((ui32Status = am_hal_cmdq_get_status(pIOMState->pCmdQHdl, &status)) == AM_HAL_STATUS_SUCCESS))
{
// For Sequence - this can be updated in the callback
pIOMState->bRestart = false;
//
// Figure out which callbacks need to be handled.
//
while ((pIOMState->ui32LastIdxProcessed != status.lastIdxProcessed) && !(pIOMState->bRestart))
{
pIOMState->ui32LastIdxProcessed++;
pIOMState->ui32NumPendTransactions--;
index = pIOMState->ui32LastIdxProcessed & (AM_HAL_IOM_MAX_PENDING_TRANSACTIONS - 1);
if ( pIOMState->pfnCallback[index] != NULL )
{
pIOMState->pfnCallback[index](pIOMState->pCallbackCtxt[index], AM_HAL_STATUS_SUCCESS);
if (pIOMState->eSeq != AM_HAL_IOM_SEQ_RUNNING)
{
pIOMState->pfnCallback[index] = NULL;
}
}
}
// For Sequence - this can be updated in the callback
if (!pIOMState->bRestart)
{
//
// Check the CQError - If set it indicates that the current transaction encountered an error
//
if (ui32IntMask & AM_HAL_IOM_INT_ERR)
{
// Need to determine the error, call the callback with proper status
pIOMState->ui32LastIdxProcessed++;
pIOMState->ui32NumPendTransactions--;
index = pIOMState->ui32LastIdxProcessed & (AM_HAL_IOM_MAX_PENDING_TRANSACTIONS - 1);
if ( pIOMState->pfnCallback[index] != NULL )
{
pIOMState->pfnCallback[index](pIOMState->pCallbackCtxt[index], internal_iom_get_int_err(ui32Module, ui32IntMask));
if (pIOMState->eSeq != AM_HAL_IOM_SEQ_RUNNING)
{
pIOMState->pfnCallback[index] = NULL;
}
}
//
// Do Error recovery
// Disable CQ
//
IOMn(ui32Module)->CQCFG_b.CQEN = 0;
//
// Disable DMA
//
IOMn(ui32Module)->DMACFG_b.DMAEN = 0;
//
// Clear DMAERR in DMASTAT
//
IOMn(ui32Module)->DMASTAT = 0;
//
// Reset Submodule & FIFO
//
internal_iom_reset_on_error(pIOMState, ui32IntMask & AM_HAL_IOM_INT_ERR);
//
// Move the command queue at next transaction
//
am_hal_cmdq_error_resume(pIOMState->pCmdQHdl);
if (pIOMState->ui32NumPendTransactions)
{
// Re-enable the CQ
am_hal_iom_CQEnable(pIOMState);
}
}
}
if (pIOMState->ui32NumPendTransactions == 0)
{
//
// Disable the Command Queue
//
am_hal_iom_CQDisable(pHandle);
}
}
if (pIOMState->ui32NumPendTransactions == 0)
{
//
// Clear interrupts
// Restore IOM interrupts.
//
IOM_SET_INTEN(ui32Module, pIOMState->ui32UserIntCfg);
}
}
//
// Return the status.
//
return ui32Status;
} // am_hal_iom_interrupt_service()
//*****************************************************************************
//
// IOM power control function
//
//*****************************************************************************
uint32_t
am_hal_iom_power_ctrl(void *pHandle,
am_hal_sysctrl_power_state_e ePowerState,
bool bRetainState)
{
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t*)pHandle;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOM_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
//
// Decode the requested power state and update IOM operation accordingly.
//
switch (ePowerState)
{
case AM_HAL_SYSCTRL_WAKE:
if (bRetainState && !pIOMState->registerState.bValid)
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
//
// Enable power control.
//
am_hal_pwrctrl_periph_enable((am_hal_pwrctrl_periph_e)(AM_HAL_PWRCTRL_PERIPH_IOM0 + pIOMState->ui32Module));
if (bRetainState)
{
//
// Restore IOM registers
IOMn(pIOMState->ui32Module)->FIFOTHR = pIOMState->registerState.regFIFOTHR;
IOMn(pIOMState->ui32Module)->CLKCFG = pIOMState->registerState.regCLKCFG;
IOMn(pIOMState->ui32Module)->SUBMODCTRL = pIOMState->registerState.regSUBMODCTRL;
IOMn(pIOMState->ui32Module)->CQADDR = pIOMState->registerState.regCQADDR;
IOMn(pIOMState->ui32Module)->CQFLAGS = pIOMState->registerState.regCQFLAGS;
IOMn(pIOMState->ui32Module)->CQPAUSEEN = pIOMState->registerState.regCQPAUSEEN;
IOMn(pIOMState->ui32Module)->CQCURIDX = pIOMState->registerState.regCQCURIDX;
IOMn(pIOMState->ui32Module)->CQENDIDX = pIOMState->registerState.regCQENDIDX;
IOMn(pIOMState->ui32Module)->MSPICFG = pIOMState->registerState.regMSPICFG;
IOMn(pIOMState->ui32Module)->MI2CCFG = pIOMState->registerState.regMI2CCFG;
IOMn(pIOMState->ui32Module)->INTEN = pIOMState->registerState.regINTEN;
IOMn(pIOMState->ui32Module)->DMATRIGEN = pIOMState->registerState.regDMATRIGEN;
//
// Set CQCFG last - can not set the enable yet
//
IOMn(pIOMState->ui32Module)->CQCFG = pIOMState->registerState.regCQCFG & ~_VAL2FLD(IOM0_CQCFG_CQEN, IOM0_CQCFG_CQEN_EN);
if (pIOMState->registerState.regCQCFG & _VAL2FLD(IOM0_CQCFG_CQEN, IOM0_CQCFG_CQEN_EN))
{
am_hal_iom_CQEnable(pIOMState);
}
pIOMState->registerState.bValid = false;
}
break;
case AM_HAL_SYSCTRL_NORMALSLEEP:
case AM_HAL_SYSCTRL_DEEPSLEEP:
// Make sure IOM is not active currently
if (pIOMState->prefix.s.bEnable &&
(((IOMn(pIOMState->ui32Module)->STATUS & (IOM0_STATUS_IDLEST_Msk | IOM0_STATUS_CMDACT_Msk)) != IOM0_STATUS_IDLEST_Msk) ||
pIOMState->ui32NumPendTransactions))
{
return AM_HAL_STATUS_IN_USE;
}
if (bRetainState)
{
// Save IOM Registers
pIOMState->registerState.regFIFOTHR = IOMn(pIOMState->ui32Module)->FIFOTHR;
pIOMState->registerState.regCLKCFG = IOMn(pIOMState->ui32Module)->CLKCFG;
pIOMState->registerState.regSUBMODCTRL = IOMn(pIOMState->ui32Module)->SUBMODCTRL;
pIOMState->registerState.regCQCFG = IOMn(pIOMState->ui32Module)->CQCFG;
pIOMState->registerState.regCQADDR = IOMn(pIOMState->ui32Module)->CQADDR;
pIOMState->registerState.regCQFLAGS = IOMn(pIOMState->ui32Module)->CQFLAGS;
pIOMState->registerState.regCQPAUSEEN = IOMn(pIOMState->ui32Module)->CQPAUSEEN;
pIOMState->registerState.regCQCURIDX = IOMn(pIOMState->ui32Module)->CQCURIDX;
pIOMState->registerState.regCQENDIDX = IOMn(pIOMState->ui32Module)->CQENDIDX;
pIOMState->registerState.regMSPICFG = IOMn(pIOMState->ui32Module)->MSPICFG;
pIOMState->registerState.regMI2CCFG = IOMn(pIOMState->ui32Module)->MI2CCFG;
pIOMState->registerState.regINTEN = IOMn(pIOMState->ui32Module)->INTEN;
pIOMState->registerState.regDMATRIGEN = IOMn(pIOMState->ui32Module)->DMATRIGEN;
pIOMState->registerState.bValid = true;
}
//
// Disable power control.
//
am_hal_pwrctrl_periph_disable((am_hal_pwrctrl_periph_e)(AM_HAL_PWRCTRL_PERIPH_IOM0 + pIOMState->ui32Module));
break;
default:
return AM_HAL_STATUS_INVALID_ARG;
}
//
// Return the status.
//
return AM_HAL_STATUS_SUCCESS;
} // am_hal_iom_power_ctrl()
//*****************************************************************************
//
// IOM configuration function.
//
//*****************************************************************************
uint32_t
am_hal_iom_configure(void *pHandle, am_hal_iom_config_t *psConfig)
{
uint32_t ui32ClkCfg;
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t*)pHandle;
uint32_t status = AM_HAL_STATUS_SUCCESS;
uint32_t ui32Module;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOM_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
//
// Validate the parameters
//
if ( (pHandle == NULL) ||
(psConfig == NULL) ||
(pIOMState->ui32Module >= AM_REG_IOM_NUM_MODULES) )
{
return AM_HAL_STATUS_INVALID_ARG;
}
// Configure not allowed in Enabled state
if (pIOMState->prefix.s.bEnable)
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
//
// Check for DMA to/from DTCM.
//
if ( ((uint32_t)psConfig->pNBTxnBuf >= AM_HAL_FLASH_DTCM_START) &&
((uint32_t)psConfig->pNBTxnBuf <= AM_HAL_FLASH_DTCM_END) )
{
return AM_HAL_STATUS_OUT_OF_RANGE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = pIOMState->ui32Module;
//
// Save the interface mode and chip select in the global handle.
//
pIOMState->eInterfaceMode = psConfig->eInterfaceMode;
//
// Set the IOM read/write FIFO thresholds to default values.
//
IOMn(ui32Module)->FIFOTHR =
_VAL2FLD(IOM0_FIFOTHR_FIFORTHR, 16) |
_VAL2FLD(IOM0_FIFOTHR_FIFOWTHR, 16);
if ( psConfig->eInterfaceMode == AM_HAL_IOM_SPI_MODE )
{
#ifndef AM_HAL_DISABLE_API_VALIDATION
//
// Validate the SPI mode
//
if ( psConfig->eSpiMode > AM_HAL_IOM_SPI_MODE_3 )
{
return AM_HAL_STATUS_INVALID_ARG;
}
if (psConfig->ui32ClockFreq > AM_HAL_IOM_MAX_FREQ)
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
//
// Determine the CLKCFG value for SPI.
//
ui32ClkCfg = iom_get_interface_clock_cfg(psConfig->ui32ClockFreq, (psConfig->eSpiMode & 2) >> 1);
//
// Set the SPI configuration.
//
IOMn(ui32Module)->MSPICFG =
( ((psConfig->eSpiMode << IOM0_MSPICFG_SPOL_Pos) & (IOM0_MSPICFG_SPHA_Msk | IOM0_MSPICFG_SPOL_Msk)) |
_VAL2FLD(IOM0_MSPICFG_FULLDUP, 0) |
_VAL2FLD(IOM0_MSPICFG_WTFC, IOM0_MSPICFG_WTFC_DIS) |
_VAL2FLD(IOM0_MSPICFG_RDFC, IOM0_MSPICFG_RDFC_DIS) |
_VAL2FLD(IOM0_MSPICFG_MOSIINV, IOM0_MSPICFG_MOSIINV_NORMAL) |
_VAL2FLD(IOM0_MSPICFG_WTFCIRQ, IOM0_MSPICFG_WTFCIRQ_MISO) |
_VAL2FLD(IOM0_MSPICFG_WTFCPOL, IOM0_MSPICFG_WTFCPOL_HIGH) |
_VAL2FLD(IOM0_MSPICFG_RDFCPOL, IOM0_MSPICFG_RDFCPOL_HIGH) |
_VAL2FLD(IOM0_MSPICFG_SPILSB, IOM0_MSPICFG_SPILSB_MSB) |
_VAL2FLD(IOM0_MSPICFG_DINDLY, 0) |
_VAL2FLD(IOM0_MSPICFG_DOUTDLY, 0) |
_VAL2FLD(IOM0_MSPICFG_MSPIRST, 0) );
}
else if ( psConfig->eInterfaceMode == AM_HAL_IOM_I2C_MODE )
{
switch (psConfig->ui32ClockFreq)
{
case AM_HAL_IOM_100KHZ:
//
// settings below should give ~100 kHz
//
ui32ClkCfg = _VAL2FLD(IOM0_CLKCFG_TOTPER, 0x77) |
_VAL2FLD(IOM0_CLKCFG_LOWPER, 0x3B) |
_VAL2FLD(IOM0_CLKCFG_DIVEN, IOM0_CLKCFG_DIVEN_EN) |
_VAL2FLD(IOM0_CLKCFG_DIV3, IOM0_CLKCFG_DIV3_DIS) |
_VAL2FLD(IOM0_CLKCFG_FSEL, IOM0_CLKCFG_FSEL_HFRC_DIV2) |
_VAL2FLD(IOM0_CLKCFG_IOCLKEN, 1);
IOMn(ui32Module)->MI2CCFG = _VAL2FLD(IOM0_MI2CCFG_STRDIS, 0) |
_VAL2FLD(IOM0_MI2CCFG_SMPCNT, 3) |
_VAL2FLD(IOM0_MI2CCFG_SDAENDLY, 15) |
_VAL2FLD(IOM0_MI2CCFG_SCLENDLY, 0) |
_VAL2FLD(IOM0_MI2CCFG_MI2CRST, 1) |
_VAL2FLD(IOM0_MI2CCFG_SDADLY, 3) |
_VAL2FLD(IOM0_MI2CCFG_ARBEN, IOM0_MI2CCFG_ARBEN_ARBDIS) |
_VAL2FLD(IOM0_MI2CCFG_I2CLSB, IOM0_MI2CCFG_I2CLSB_MSBFIRST) |
_VAL2FLD(IOM0_MI2CCFG_ADDRSZ, IOM0_MI2CCFG_ADDRSZ_ADDRSZ7);
break;
case AM_HAL_IOM_400KHZ:
//
// settings below should give ~400 kHz
//
ui32ClkCfg = _VAL2FLD(IOM0_CLKCFG_TOTPER, 0x1D) |
_VAL2FLD(IOM0_CLKCFG_LOWPER, 0x0E) |
_VAL2FLD(IOM0_CLKCFG_DIVEN, IOM0_CLKCFG_DIVEN_EN) |
_VAL2FLD(IOM0_CLKCFG_DIV3, IOM0_CLKCFG_DIV3_DIS) |
_VAL2FLD(IOM0_CLKCFG_FSEL, IOM0_CLKCFG_FSEL_HFRC_DIV2) |
_VAL2FLD(IOM0_CLKCFG_IOCLKEN, 1);
IOMn(ui32Module)->MI2CCFG = _VAL2FLD(IOM0_MI2CCFG_STRDIS, 0) |
_VAL2FLD(IOM0_MI2CCFG_SMPCNT, 3) |
_VAL2FLD(IOM0_MI2CCFG_SDAENDLY, 15) |
_VAL2FLD(IOM0_MI2CCFG_SCLENDLY, 2) |
_VAL2FLD(IOM0_MI2CCFG_MI2CRST, 1) |
_VAL2FLD(IOM0_MI2CCFG_SDADLY, 3) |
_VAL2FLD(IOM0_MI2CCFG_ARBEN, IOM0_MI2CCFG_ARBEN_ARBDIS) |
_VAL2FLD(IOM0_MI2CCFG_I2CLSB, IOM0_MI2CCFG_I2CLSB_MSBFIRST) |
_VAL2FLD(IOM0_MI2CCFG_ADDRSZ, IOM0_MI2CCFG_ADDRSZ_ADDRSZ7);
break;
case AM_HAL_IOM_1MHZ:
//
// settings below should give ~860 kHz
//
ui32ClkCfg = _VAL2FLD(IOM0_CLKCFG_TOTPER, 0x06) |
_VAL2FLD(IOM0_CLKCFG_LOWPER, 0x03) |
_VAL2FLD(IOM0_CLKCFG_DIVEN, IOM0_CLKCFG_DIVEN_EN) |
_VAL2FLD(IOM0_CLKCFG_DIV3, IOM0_CLKCFG_DIV3_DIS) |
_VAL2FLD(IOM0_CLKCFG_FSEL, IOM0_CLKCFG_FSEL_HFRC_DIV4) |
_VAL2FLD(IOM0_CLKCFG_IOCLKEN, 1);
IOMn(ui32Module)->MI2CCFG = _VAL2FLD(IOM0_MI2CCFG_STRDIS, 0) |
_VAL2FLD(IOM0_MI2CCFG_SMPCNT, 0x21) |
_VAL2FLD(IOM0_MI2CCFG_SDAENDLY, 3) |
_VAL2FLD(IOM0_MI2CCFG_SCLENDLY, 0) |
_VAL2FLD(IOM0_MI2CCFG_MI2CRST, 1) |
_VAL2FLD(IOM0_MI2CCFG_SDADLY, 0) |
_VAL2FLD(IOM0_MI2CCFG_ARBEN, IOM0_MI2CCFG_ARBEN_ARBDIS) |
_VAL2FLD(IOM0_MI2CCFG_I2CLSB, IOM0_MI2CCFG_I2CLSB_MSBFIRST) |
_VAL2FLD(IOM0_MI2CCFG_ADDRSZ, IOM0_MI2CCFG_ADDRSZ_ADDRSZ7);
break;
default:
return AM_HAL_STATUS_INVALID_ARG;
}
}
else
{
return AM_HAL_STATUS_OUT_OF_RANGE;
}
//
// Enable and set the clock configuration.
//
ui32ClkCfg |= _VAL2FLD(IOM0_CLKCFG_IOCLKEN, 1);
IOMn(ui32Module)->CLKCFG = ui32ClkCfg;
pIOMState->ui32BitTimeTicks = AM_HAL_CLKGEN_FREQ_MAX_HZ / psConfig->ui32ClockFreq;
//
// Set the delay timeout value to the default maximum value.
//
pIOMState->waitTimeout = 1000;
pIOMState->pNBTxnBuf = psConfig->pNBTxnBuf;
pIOMState->ui32NBTxnBufLength = psConfig->ui32NBTxnBufLength;
// Worst case minimum CQ entries that can be accomodated in provided buffer
// Need to account for the wrap
pIOMState->ui32MaxPending = ((pIOMState->ui32NBTxnBufLength - 8) * 4 / AM_HAL_IOM_CQ_ENTRY_SIZE);
if (pIOMState->ui32MaxPending > AM_HAL_IOM_MAX_PENDING_TRANSACTIONS)
{
pIOMState->ui32MaxPending = AM_HAL_IOM_MAX_PENDING_TRANSACTIONS;
}
// Disable the DCX
for (uint8_t i = 0; i <= AM_HAL_IOM_MAX_CS_SPI; i++)
{
pIOMState->dcx[i] = 0;
}
//
// Return the status.
//
return status;
} // am_hal_iom_configure()
//*****************************************************************************
//
// IOM blocking transfer function
//
//*****************************************************************************
uint32_t
am_hal_iom_blocking_transfer(void *pHandle,
am_hal_iom_transfer_t *psTransaction)
{
uint32_t ui32Cmd, ui32Offset, ui32OffsetCnt, ui32Dir, ui32Cont;
uint32_t ui32FifoRem, ui32FifoSiz;
uint32_t ui32Bytes;
uint32_t ui32IntConfig;
uint32_t *pui32Buffer;
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t*)pHandle;
uint32_t ui32Module;
uint32_t ui32Status = AM_HAL_STATUS_SUCCESS;
bool bCmdCmp = false;
uint32_t numWait = 0;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if ( !AM_HAL_IOM_CHK_HANDLE(pHandle) )
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
if ( !psTransaction )
{
return AM_HAL_STATUS_INVALID_ARG;
}
if (psTransaction->eDirection > AM_HAL_IOM_RX)
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Bytes = psTransaction->ui32NumBytes;
if ( ui32Bytes == 0 )
{
//
// Only TX is supported for 0-length transactions. A 0-length
// transfer presumes that only an offset value is being written.
//
psTransaction->eDirection = AM_HAL_IOM_TX;
}
#ifndef AM_HAL_DISABLE_API_VALIDATION
//
// Validate parameters
//
ui32Status = validate_transaction(pIOMState, psTransaction, true);
if (ui32Status != AM_HAL_STATUS_SUCCESS)
{
return ui32Status;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
if (pIOMState->eSeq == AM_HAL_IOM_SEQ_RUNNING)
{
// Dynamic additions to sequence not allowed
return AM_HAL_STATUS_INVALID_OPERATION;
}
ui32Module = pIOMState->ui32Module;
ui32Offset = psTransaction->ui32Instr;
ui32OffsetCnt = psTransaction->ui32InstrLen;
ui32Dir = psTransaction->eDirection;
ui32Cont = psTransaction->bContinue ? 1 : 0;
pui32Buffer = (ui32Dir == AM_HAL_IOM_TX) ? psTransaction->pui32TxBuffer : psTransaction->pui32RxBuffer;
//
// Make sure any previous non-blocking transfers have completed.
//
ui32Status = am_hal_flash_delay_status_check(pIOMState->waitTimeout,
(uint32_t)&pIOMState->ui32NumPendTransactions,
0xFFFFFFFF,
0,
true);
if ( ui32Status != AM_HAL_STATUS_SUCCESS )
{
return ui32Status;
}
//
// Make sure any previous blocking transfer has been completed.
// This check is required to make sure previous transaction has cleared if the blocking call
// finished with a timeout
//
ui32Status = am_hal_flash_delay_status_check(pIOMState->waitTimeout,
(uint32_t)&IOMn(ui32Module)->STATUS,
(IOM0_STATUS_IDLEST_Msk | IOM0_STATUS_CMDACT_Msk),
IOM0_STATUS_IDLEST_Msk,
true);
if ( ui32Status != AM_HAL_STATUS_SUCCESS )
{
return ui32Status;
}
//
// Disable interrupts so that we don't get any undesired interrupts.
//
ui32IntConfig = IOMn(ui32Module)->INTEN;
//
// Disable IOM interrupts as we'll be polling
//
IOMn(ui32Module)->INTEN = 0;
//
// Disable DMA - in case the last transaction was DMA
// For CQ - we disable DMA only at the start of next transaction
//
IOMn(ui32Module)->DMACFG_b.DMAEN = 0;
//
// Clear interrupts
//
IOMn(ui32Module)->INTCLR = AM_HAL_IOM_INT_ALL;
//
// Set the dev addr (either 7 or 10 bit as configured in MI2CCFG).
//
IOMn(ui32Module)->DEVCFG = psTransaction->uPeerInfo.ui32I2CDevAddr;
// CMDRPT register has been repurposed for DCX
// Set the DCX
IOMn(ui32Module)->DCX = (pIOMState->eInterfaceMode == AM_HAL_IOM_SPI_MODE) ? pIOMState->dcx[psTransaction->uPeerInfo.ui32SpiChipSelect] : 0;
//
// Build the CMD value
//
ui32Cmd = pIOMState->eInterfaceMode == AM_HAL_IOM_SPI_MODE ?
psTransaction->uPeerInfo.ui32SpiChipSelect : 0;
ui32Cmd = build_cmd(ui32Cmd, ui32Dir, ui32Cont, ui32Offset, ui32OffsetCnt, ui32Bytes);
//
// Set the OFFSETHI register.
//
IOMn(ui32Module)->OFFSETHI = (uint16_t)(ui32Offset >> 8);
ui32Bytes = psTransaction->ui32NumBytes;
if ( ui32Dir == AM_HAL_IOM_RX )
{
//
// Start the transfer
//
IOMn(ui32Module)->CMD = ui32Cmd;
//
// Start a loop to catch the Rx data.
//
while ( ui32Bytes )
{
//
// Limit the wait to reasonable limit - instead of blocking forever
//
numWait = 0;
while ((ui32FifoSiz = IOMn(ui32Module)->FIFOPTR_b.FIFO1SIZ) < 4)
{
if (numWait++ < AM_HAL_IOM_MAX_BLOCKING_WAIT)
{
if (bCmdCmp && (ui32Bytes > ui32FifoSiz))
{
//
// No more data expected. Get out of the loop
//
break;
}
am_hal_flash_delay( FLASH_CYCLES_US(1) );
}
else
{
//
// We've waited long enough - get out!
//
break;
}
bCmdCmp = IOMn(ui32Module)->INTSTAT_b.CMDCMP;
}
if (ui32FifoSiz < 4)
{
//
// Something went wrong - get out and report failure
//
break;
}
while ((ui32FifoSiz >= 4) && ui32Bytes)
{
//
// Safe to read the FIFO, read 4 bytes
//
uint32_t ui32Read;
ui32Read = IOMn(ui32Module)->FIFOPOP;
#if MANUAL_POP
IOMn(ui32Module)->FIFOPOP = 0x11111111;
#endif
ui32FifoSiz -= 4;
if (ui32Bytes >= 4)
{
*pui32Buffer++ = ui32Read;
ui32Bytes -= 4;
}
else
{
// Copy byte by byte - so as to not corrupt the rest of the buffer
uint8_t *pui8Buffer = (uint8_t *)pui32Buffer;
do
{
*pui8Buffer++ = ui32Read & 0xFF;
ui32Read >>= 8;
} while (--ui32Bytes);
}
}
}
}
else if ( ui32Dir == AM_HAL_IOM_TX )
{
// Write data to FIFO first - before starting the transfer
ui32FifoRem = IOMn(ui32Module)->FIFOPTR_b.FIFO0REM;
while ((ui32FifoRem >= 4) && ui32Bytes)
{
IOMn(ui32Module)->FIFOPUSH = *pui32Buffer++;
ui32FifoRem -= 4;
if (ui32Bytes >= 4)
{
ui32Bytes -= 4;
}
else
{
ui32Bytes = 0;
}
}
//
// Start the transfer
//
IOMn(ui32Module)->CMD = ui32Cmd;
//
// Keep looping until we're out of bytes to send or command complete (error).
//
while (ui32Bytes)
{
//
// Limit the wait to reasonable limit - instead of blocking forever
//
numWait = 0;
while ((ui32FifoRem = IOMn(ui32Module)->FIFOPTR_b.FIFO0REM) < 4)
{
bCmdCmp = IOMn(ui32Module)->INTSTAT_b.CMDCMP;
if (bCmdCmp || (numWait++ >= AM_HAL_IOM_MAX_BLOCKING_WAIT))
{
//
// FIFO not expected to change any more - get out
//
break;
}
else
{
am_hal_flash_delay( FLASH_CYCLES_US(1) );
}
}
if (bCmdCmp || (ui32FifoRem < 4))
{
//
// Something went wrong - bail out
//
break;
}
while ((ui32FifoRem >= 4) && ui32Bytes)
{
IOMn(ui32Module)->FIFOPUSH = *pui32Buffer++;
ui32FifoRem -= 4;
if (ui32Bytes >= 4)
{
ui32Bytes -= 4;
}
else
{
ui32Bytes = 0;
}
}
}
}
//
// Make sure transfer is completed.
//
ui32Status = am_hal_flash_delay_status_check(AM_HAL_IOM_MAX_BLOCKING_WAIT,
(uint32_t)&IOMn(ui32Module)->STATUS,
(IOM0_STATUS_IDLEST_Msk | IOM0_STATUS_CMDACT_Msk),
IOM0_STATUS_IDLEST_Msk,
true);
if ( ui32Status == AM_HAL_STATUS_SUCCESS )
{
ui32Status = internal_iom_get_int_err(ui32Module, 0);
if (ui32Status == AM_HAL_STATUS_SUCCESS)
{
if (ui32Bytes)
{
// Indicates transaction did not finish for some reason
ui32Status = AM_HAL_STATUS_FAIL;
}
}
}
if ( ui32Status != AM_HAL_STATUS_SUCCESS )
{
// Do Error recovery
// Reset Submodule & FIFO
internal_iom_reset_on_error(pIOMState, IOMn(ui32Module)->INTSTAT);
}
//
// Clear interrupts
// Re-enable IOM interrupts.
//
IOMn(ui32Module)->INTCLR = AM_HAL_IOM_INT_ALL;
IOMn(ui32Module)->INTEN = ui32IntConfig;
//
// Return the status.
//
return ui32Status;
} // am_hal_iom_blocking_transfer()
//*****************************************************************************
//
// IOM non-blocking transfer function
//
//*****************************************************************************
uint32_t
am_hal_iom_nonblocking_transfer(void *pHandle,
am_hal_iom_transfer_t *psTransaction,
am_hal_iom_callback_t pfnCallback,
void *pCallbackCtxt)
{
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t*)pHandle;
uint32_t ui32Status = AM_HAL_STATUS_SUCCESS;
uint32_t ui32NumPend;
#ifndef AM_HAL_DISABLE_API_VALIDATION
uint32_t ui32DMAAddress;
if ( !AM_HAL_IOM_CHK_HANDLE(pHandle) )
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
if ( !psTransaction )
{
return AM_HAL_STATUS_INVALID_ARG;
}
if (psTransaction->eDirection > AM_HAL_IOM_RX)
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
//
// Check for DMA to/from DTCM.
//
ui32DMAAddress = (psTransaction->eDirection == AM_HAL_IOM_TX) ? (uint32_t)psTransaction->pui32TxBuffer : (uint32_t)psTransaction->pui32RxBuffer;
if ( (ui32DMAAddress >= AM_HAL_FLASH_DTCM_START) &&
(ui32DMAAddress <= AM_HAL_FLASH_DTCM_END) )
{
return AM_HAL_STATUS_OUT_OF_RANGE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
if ( psTransaction->ui32NumBytes == 0 )
{
//
// Only TX is supported for 0-length transactions. A 0-length
// transfer presumes that only an offset value is being written.
//
psTransaction->eDirection = AM_HAL_IOM_TX;
}
#ifndef AM_HAL_DISABLE_API_VALIDATION
//
// Validate parameters
//
ui32Status = validate_transaction(pIOMState, psTransaction, false);
if (ui32Status != AM_HAL_STATUS_SUCCESS)
{
return ui32Status;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
am_hal_iom_callback_t pfnCallback1 = pfnCallback;
if (!pIOMState->pCmdQHdl)
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
if (pIOMState->eSeq == AM_HAL_IOM_SEQ_RUNNING)
{
// Dynamic additions to sequence not allowed
return AM_HAL_STATUS_INVALID_OPERATION;
}
if (pIOMState->block && (psTransaction->ui32PauseCondition != 0))
{
// Paused operations not allowed in block mode
return AM_HAL_STATUS_INVALID_OPERATION;
}
if (!pfnCallback1 && !pIOMState->block && (pIOMState->eSeq == AM_HAL_IOM_SEQ_NONE) &&
(pIOMState->ui32NumUnSolicited >= (pIOMState->ui32MaxPending / 2)))
{
// Need to schedule a dummy callback, to ensure ui32NumPendTransactions get updated in ISR
pfnCallback1 = iom_dummy_callback;
}
//
// DMA defaults to using the Command Queue
//
ui32Status = am_hal_iom_CQAddTransaction(pHandle, psTransaction, pfnCallback1, pCallbackCtxt);
if (ui32Status == AM_HAL_STATUS_SUCCESS)
{
uint32_t ui32Critical = 0;
//
// Need to protect access of ui32NumPendTransactions as it is accessed
// from ISR as well
//
// Start a critical section.
//
ui32Critical = am_hal_interrupt_master_disable();
//
// Register for interrupt only if there is a callback
//
ui32Status = am_hal_cmdq_post_block(pIOMState->pCmdQHdl, pfnCallback1);
if (ui32Status == AM_HAL_STATUS_SUCCESS)
{
ui32NumPend = pIOMState->ui32NumPendTransactions++;
pIOMState->ui32NumSeqTransactions++;
if (pfnCallback)
{
pIOMState->bAutonomous = false;
pIOMState->ui32NumUnSolicited = 0;
}
else
{
if (pfnCallback1)
{
// This implies we have already scheduled a dummy callback
pIOMState->ui32NumUnSolicited = 0;
}
else
{
pIOMState->ui32NumUnSolicited++;
}
}
if (0 == ui32NumPend)
{
pIOMState->ui32UserIntCfg = IOMn(pIOMState->ui32Module)->INTEN;
IOM_SET_INTEN(pIOMState->ui32Module, AM_HAL_IOM_INT_CQMODE);
am_hal_iom_CQEnable(pIOMState);
}
}
else
{
am_hal_cmdq_release_block(pIOMState->pCmdQHdl);
}
//
// End the critical section.
//
am_hal_interrupt_master_set(ui32Critical);
}
//
// Return the status.
//
return ui32Status;
} // am_hal_iom_nonblocking_transfer()
//*****************************************************************************
//
//! @brief Perform a simple full-duplex transaction to the SPI interface.
//!
//! This function performs SPI full-duplex operation to a selected SPI device.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This means that you will need to byte-pack the \e pui32TxData array with the
//! data you intend to send over the interface. One easy way to do this is to
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
//! put your actual data into the array. If there are not enough bytes in your
//! desired message to completely fill the last 32-bit word, you may pad that
//! last word with bytes of any value. The IOM hardware will only read the
//! first \e ui32NumBytes in the \e pui32TxData array.
//!
//! @return returns AM_HAL_IOM_SUCCESS on successful execution.
//
//*****************************************************************************
uint32_t
am_hal_iom_spi_blocking_fullduplex(void *pHandle,
am_hal_iom_transfer_t *psTransaction)
{
uint32_t ui32Cmd, ui32Offset, ui32OffsetCnt, ui32Dir, ui32Cont;
uint32_t ui32FifoRem, ui32FifoSiz;
uint32_t ui32Bytes;
uint32_t ui32RxBytes;
uint32_t ui32IntConfig;
uint32_t *pui32TxBuffer;
uint32_t *pui32RxBuffer;
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t*)pHandle;
uint32_t ui32Module;
uint32_t ui32Status = AM_HAL_STATUS_SUCCESS;
bool bCmdCmp = false;
uint32_t numWait = 0;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if ( !AM_HAL_IOM_CHK_HANDLE(pHandle) )
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
if ( !psTransaction )
{
return AM_HAL_STATUS_INVALID_ARG;
}
if ( psTransaction->eDirection != AM_HAL_IOM_FULLDUPLEX )
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
//
// Validate parameters
//
ui32Status = validate_transaction(pIOMState, psTransaction, true);
if ( ui32Status != AM_HAL_STATUS_SUCCESS )
{
return ui32Status;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Module = pIOMState->ui32Module;
ui32Offset = psTransaction->ui32Instr;
ui32OffsetCnt = psTransaction->ui32InstrLen;
ui32Bytes = psTransaction->ui32NumBytes;
ui32Dir = psTransaction->eDirection;
ui32Cont = psTransaction->bContinue ? 1 : 0;
pui32RxBuffer = psTransaction->pui32RxBuffer;
pui32TxBuffer = psTransaction->pui32TxBuffer;
//
// Make sure any previous non-blocking transfers have completed.
//
ui32Status = am_hal_flash_delay_status_check(pIOMState->waitTimeout,
(uint32_t)&pIOMState->ui32NumPendTransactions,
0xFFFFFFFF,
0,
true);
if ( ui32Status != AM_HAL_STATUS_SUCCESS )
{
return ui32Status;
}
//
// Make sure any previous blocking transfer has been completed.
// This check is required to make sure previous transaction has cleared if the blocking call
// finished with a timeout
//
ui32Status = am_hal_flash_delay_status_check(pIOMState->waitTimeout,
(uint32_t)&IOMn(ui32Module)->STATUS,
(IOM0_STATUS_IDLEST_Msk | IOM0_STATUS_CMDACT_Msk),
IOM0_STATUS_IDLEST_Msk,
true);
if ( ui32Status != AM_HAL_STATUS_SUCCESS )
{
return ui32Status;
}
//
// Disable interrupts so that we don't get any undesired interrupts.
//
ui32IntConfig = IOMn(ui32Module)->INTEN;
//
// Disable IOM interrupts as we'll be polling
//
IOMn(ui32Module)->INTEN = 0;
//
// Clear interrupts
//
IOMn(ui32Module)->INTCLR = AM_HAL_IOM_INT_ALL;
//
// Set the dev addr (either 7 or 10 bit as configured in MI2CCFG).
//
IOMn(ui32Module)->DEVCFG = psTransaction->uPeerInfo.ui32I2CDevAddr;
// CMDRPT register has been repurposed for DCX
// Set the DCX
IOMn(ui32Module)->DCX = pIOMState->dcx[psTransaction->uPeerInfo.ui32SpiChipSelect];
//
// Build the CMD value
//
ui32Cmd = pIOMState->eInterfaceMode == AM_HAL_IOM_SPI_MODE ?
psTransaction->uPeerInfo.ui32SpiChipSelect : 0;
ui32Cmd = build_cmd(ui32Cmd, ui32Dir, ui32Cont, ui32Offset, ui32OffsetCnt, ui32Bytes);
//
// Set the OFFSETHI register.
//
IOMn(ui32Module)->OFFSETHI = (uint16_t)(ui32Offset >> 8);
//
// Set FULLDUPLEX mode
//
IOMn(ui32Module)->MSPICFG |= _VAL2FLD(IOM0_MSPICFG_FULLDUP, 1);
//
// Start the transfer
//
IOMn(ui32Module)->CMD = ui32Cmd;
ui32Bytes = psTransaction->ui32NumBytes;
ui32RxBytes = ui32Bytes;
//
// Start a loop to catch the Rx data.
//
//
// Keep looping until we're out of bytes to send or command complete (error).
//
while (ui32Bytes || ui32RxBytes)
{
//
// Limit the wait to reasonable limit - instead of blocking forever
//
numWait = 0;
ui32FifoRem = IOMn(ui32Module)->FIFOPTR_b.FIFO0REM;
ui32FifoSiz = IOMn(ui32Module)->FIFOPTR_b.FIFO1SIZ;
while ((ui32FifoRem < 4) &&
(ui32FifoSiz < 4))
{
if (numWait++ < AM_HAL_IOM_MAX_BLOCKING_WAIT)
{
if (bCmdCmp && (ui32RxBytes > ui32FifoSiz))
{
//
// No more data expected. Get out of the loop
//
break;
}
am_hal_flash_delay( FLASH_CYCLES_US(1) );
}
else
{
//
// We've waited long enough - get out!
//
break;
}
bCmdCmp = IOMn(ui32Module)->INTSTAT_b.CMDCMP;
ui32FifoRem = IOMn(ui32Module)->FIFOPTR_b.FIFO0REM;
ui32FifoSiz = IOMn(ui32Module)->FIFOPTR_b.FIFO1SIZ;
}
if (bCmdCmp || ((ui32FifoRem < 4) && (ui32FifoSiz < 4)))
{
//
// Something went wrong - bail out
//
break;
}
while ((ui32FifoRem >= 4) && ui32Bytes)
{
IOMn(ui32Module)->FIFOPUSH = *pui32TxBuffer++;
ui32FifoRem -= 4;
if (ui32Bytes >= 4)
{
ui32Bytes -= 4;
}
else
{
ui32Bytes = 0;
}
}
while ((ui32FifoSiz >= 4) && ui32RxBytes)
{
//
// Safe to read the FIFO, read 4 bytes
//
*pui32RxBuffer++ = IOMn(ui32Module)->FIFOPOP;
#if MANUAL_POP
IOMn(ui32Module)->FIFOPOP = 0x11111111;
#endif
ui32FifoSiz -= 4;
if (ui32RxBytes >= 4)
{
ui32RxBytes -= 4;
}
else
{
ui32RxBytes = 0;
}
}
}
//
// Make sure transfer is completed.
//
ui32Status = am_hal_flash_delay_status_check(AM_HAL_IOM_MAX_BLOCKING_WAIT,
(uint32_t)&IOMn(ui32Module)->STATUS,
(IOM0_STATUS_IDLEST_Msk | IOM0_STATUS_CMDACT_Msk),
IOM0_STATUS_IDLEST_Msk,
true);
if ( ui32Status != AM_HAL_STATUS_SUCCESS )
{
return ui32Status;
}
ui32Status = internal_iom_get_int_err(ui32Module, 0);
if (ui32Status == AM_HAL_STATUS_SUCCESS)
{
if (ui32Bytes)
{
// Indicates transaction did not finish for some reason
ui32Status = AM_HAL_STATUS_FAIL;
}
}
else
{
// Do Error recovery
// Reset Submodule & FIFO
internal_iom_reset_on_error(pIOMState, IOMn(ui32Module)->INTSTAT);
}
//
// Clear interrupts
// Re-enable IOM interrupts.
//
IOMn(ui32Module)->INTCLR = AM_HAL_IOM_INT_ALL;
IOMn(ui32Module)->INTEN = ui32IntConfig;
//
// Return the status.
//
return ui32Status;
}
//*****************************************************************************
//
//! @brief IOM control function
//!
//! @param handle - handle for the IOM.
//! @param eReq - device specific special request code.
//! @param pArgs - pointer to the request specific arguments.
//!
//! This function allows advanced settings
//!
//! @return status - generic or interface specific status.
//
//*****************************************************************************
uint32_t am_hal_iom_control(void *pHandle, am_hal_iom_request_e eReq, void *pArgs)
{
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t*)pHandle;
uint32_t status = AM_HAL_STATUS_SUCCESS;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!AM_HAL_IOM_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
//
// Validate the parameters
//
if (eReq >= AM_HAL_IOM_REQ_MAX)
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
uint32_t ui32Module = pIOMState->ui32Module;
switch (eReq)
{
case AM_HAL_IOM_REQ_FLAG_SETCLR:
if (pArgs)
{
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (*((uint32_t *)pArgs) & AM_HAL_IOM_SC_RESV_MASK)
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
IOMn(ui32Module)->CQSETCLEAR = *((uint32_t *)pArgs);
}
else
{
status = AM_HAL_STATUS_INVALID_ARG;
}
break;
case AM_HAL_IOM_REQ_SPI_LSB:
if (pArgs)
{
IOMn(ui32Module)->MSPICFG_b.SPILSB = *((uint32_t *)pArgs);
}
else
{
status = AM_HAL_STATUS_INVALID_ARG;
}
break;
case AM_HAL_IOM_REQ_SPI_FULLDUPLEX:
if (pArgs)
{
IOMn(ui32Module)->MSPICFG_b.FULLDUP = *((uint32_t *)pArgs);
}
else
{
status = AM_HAL_STATUS_INVALID_ARG;
}
break;
case AM_HAL_IOM_REQ_SPI_RDTHRESH:
if (pArgs)
{
IOMn(ui32Module)->FIFOTHR_b.FIFORTHR = *((uint32_t *)pArgs);
}
else
{
status = AM_HAL_STATUS_INVALID_ARG;
}
break;
case AM_HAL_IOM_REQ_SPI_WRTHRESH:
if (pArgs)
{
IOMn(ui32Module)->FIFOTHR_b.FIFOWTHR = *((uint32_t *)pArgs);
}
else
{
status = AM_HAL_STATUS_INVALID_ARG;
}
break;
case AM_HAL_IOM_REQ_LINK_MSPI:
if (pArgs)
{
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (*((uint32_t *)pArgs) > AM_REG_MSPI_NUM_MODULES)
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
IOMn(ui32Module)->CQCFG_b.MSPIFLGSEL = *((uint32_t *)pArgs);
}
else
{
status = AM_HAL_STATUS_INVALID_ARG;
}
break;
case AM_HAL_IOM_REQ_PAUSE:
// Force CQ to Paused
status = iom_cq_pause(pIOMState);
break;
case AM_HAL_IOM_REQ_UNPAUSE:
// Resume the CQ
IOMn(ui32Module)->CQSETCLEAR = AM_HAL_IOM_SC_UNPAUSE_CQ;
break;
case AM_HAL_IOM_REQ_SET_SEQMODE:
{
am_hal_iom_seq_e eSeq;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!pArgs)
{
return AM_HAL_STATUS_INVALID_ARG;
}
if (!pIOMState->pNBTxnBuf)
{
// No space for CMDQ
return AM_HAL_STATUS_INVALID_OPERATION;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
eSeq = *((bool *)pArgs) ? AM_HAL_IOM_SEQ_UNDER_CONSTRUCTION: AM_HAL_IOM_SEQ_NONE;
if (eSeq == pIOMState->eSeq)
{
// Nothing to do
return AM_HAL_STATUS_SUCCESS;
}
switch (pIOMState->eSeq)
{
case AM_HAL_IOM_SEQ_RUNNING:
{
// Force CQ to Pause
status = iom_cq_pause(pIOMState);
break;
}
case AM_HAL_IOM_SEQ_NONE:
{
// Make sure there is no non-blocking transaction in progress
if (pIOMState->ui32NumPendTransactions)
{
status = AM_HAL_STATUS_INVALID_OPERATION;
}
break;
}
default:
;
}
if (status == AM_HAL_STATUS_SUCCESS)
{
// Reset the cmdq
am_hal_cmdq_reset(pIOMState->pCmdQHdl);
pIOMState->ui32LastIdxProcessed = 0;
pIOMState->ui32NumSeqTransactions = 0;
pIOMState->ui32NumPendTransactions = 0;
pIOMState->ui32NumUnSolicited = 0;
pIOMState->eSeq = eSeq;
pIOMState->bAutonomous = true;
}
break;
}
case AM_HAL_IOM_REQ_SEQ_END:
{
uint32_t ui32Status = AM_HAL_STATUS_SUCCESS;
am_hal_cmdq_entry_t *pCQBlock;
uint32_t index;
am_hal_iom_seq_end_t *pLoop = (am_hal_iom_seq_end_t *)pArgs;
uint32_t pause = 0;
uint32_t scUnpause = 0;
uint32_t ui32Critical = 0;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!pArgs)
{
return AM_HAL_STATUS_INVALID_ARG;
}
if (pLoop->ui32PauseCondition & AM_HAL_IOM_PAUSE_FLAG_RESV)
{
return AM_HAL_STATUS_INVALID_ARG;
}
if (pLoop->ui32StatusSetClr & AM_HAL_IOM_SC_RESV_MASK)
{
return AM_HAL_STATUS_INVALID_ARG;
}
if (pIOMState->eSeq != AM_HAL_IOM_SEQ_UNDER_CONSTRUCTION)
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
if (pIOMState->block)
{
// End the block if the sequence is ending
pIOMState->block = 0;
// Unblock the whole batch of commands in this block
IOMn(pIOMState->ui32Module)->CQSETCLEAR = AM_HAL_IOM_SC_UNPAUSE_BLOCK;
}
if ((pLoop->bLoop) && (!pIOMState->bAutonomous))
{
// Need to insert special element in CQ to cause a callback
// This is to reset internal state
ui32Status = am_hal_cmdq_alloc_block(pIOMState->pCmdQHdl, 1, &pCQBlock, &index);
if (ui32Status != AM_HAL_STATUS_SUCCESS)
{
return ui32Status;
}
else
{
//
// Store the callback function pointer.
//
pIOMState->pfnCallback[index & (AM_HAL_IOM_MAX_PENDING_TRANSACTIONS - 1)] = iom_seq_loopback;
pIOMState->pCallbackCtxt[index & (AM_HAL_IOM_MAX_PENDING_TRANSACTIONS - 1)] = (void *)pIOMState;
// Dummy Entry
pCQBlock->address = (uint32_t)&IOMn(pIOMState->ui32Module)->CQSETCLEAR;
pCQBlock->value = 0;
//
// Need to protect access of ui32NumPendTransactions as it is accessed
// from ISR as well
//
// Start a critical section.
//
ui32Critical = am_hal_interrupt_master_disable();
//
// Post to the CQ.
//
ui32Status = am_hal_cmdq_post_block(pIOMState->pCmdQHdl, true);
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
am_hal_cmdq_release_block(pIOMState->pCmdQHdl);
}
else
{
uint32_t ui32NumPend = pIOMState->ui32NumPendTransactions++;
if (0 == ui32NumPend)
{
pIOMState->ui32UserIntCfg = IOMn(ui32Module)->INTEN;
IOM_SET_INTEN(ui32Module, AM_HAL_IOM_INT_CQMODE);
// Re-enable the CQ
am_hal_iom_CQEnable(pIOMState);
}
}
//
// End the critical section.
//
am_hal_interrupt_master_set(ui32Critical);
// Use SWFLAG6 to cause a pause
pause = AM_HAL_IOM_PAUSE_FLAG_SEQLOOP;
// Revert back the flag after SW callback unpauses it
scUnpause = AM_HAL_IOM_SC_PAUSE_SEQLOOP;
}
}
// Insert the loopback
ui32Status = am_hal_cmdq_alloc_block(pIOMState->pCmdQHdl, sizeof(am_hal_iom_cq_loop_entry_t) / 8, &pCQBlock, &index);
if (ui32Status != AM_HAL_STATUS_SUCCESS)
{
return ui32Status;
}
else
{
am_hal_iom_cq_loop_entry_t *pLoopEntry = (am_hal_iom_cq_loop_entry_t *)pCQBlock;
pLoopEntry->ui32PAUSENAddr = pLoopEntry->ui32PAUSEN2Addr = (uint32_t)&IOMn(ui32Module)->CQPAUSEEN;
pLoopEntry->ui32SETCLRAddr = (uint32_t)&IOMn(ui32Module)->CQSETCLEAR;
pLoopEntry->ui32PAUSEENVal = get_pause_val(pIOMState, pLoop->ui32PauseCondition | pause);
pLoopEntry->ui32PAUSEEN2Val = AM_HAL_IOM_PAUSE_DEFAULT;
pLoopEntry->ui32SETCLRVal = pLoop->ui32StatusSetClr | scUnpause;
//
// Need to protect access of ui32NumPendTransactions as it is accessed
// from ISR as well
//
// Start a critical section.
//
ui32Critical = am_hal_interrupt_master_disable();
//
// Post to the CQ.
//
if (pLoop->bLoop)
{
ui32Status = am_hal_cmdq_post_loop_block(pIOMState->pCmdQHdl, false);
}
else
{
ui32Status = am_hal_cmdq_post_block(pIOMState->pCmdQHdl, false);
}
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
am_hal_cmdq_release_block(pIOMState->pCmdQHdl);
}
else
{
uint32_t ui32NumPend = pIOMState->ui32NumPendTransactions++;
pIOMState->eSeq = (pLoop->bLoop) ? AM_HAL_IOM_SEQ_RUNNING : AM_HAL_IOM_SEQ_NONE;
if (0 == ui32NumPend)
{
pIOMState->ui32UserIntCfg = IOMn(ui32Module)->INTEN;
IOM_SET_INTEN(ui32Module, AM_HAL_IOM_INT_CQMODE);
// Re-enable the CQ
am_hal_iom_CQEnable(pIOMState);
}
}
//
// End the critical section.
//
am_hal_interrupt_master_set(ui32Critical);
}
return AM_HAL_STATUS_SUCCESS;
//break;
}
case AM_HAL_IOM_REQ_INIT_HIPRIO:
{
am_hal_iom_hiprio_cfg_t *pHPCfg = (am_hal_iom_hiprio_cfg_t *)pArgs;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!pHPCfg)
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
pIOMState->ui32NumHPEntries = pIOMState->ui32LastHPIdxProcessed = 0;
pIOMState->ui32NextHPIdx = pIOMState->ui32LastHPIdxProcessed + 1;
pIOMState->pHPTransactions = (am_hal_iom_dma_entry_t *)pHPCfg->pBuf;
pIOMState->ui32MaxHPTransactions = pHPCfg->size / sizeof(am_hal_iom_dma_entry_t);
break;
}
case AM_HAL_IOM_REQ_START_BLOCK:
// Pause the next block from proceeding till whole block is finished
IOMn(pIOMState->ui32Module)->CQSETCLEAR = AM_HAL_IOM_SC_PAUSE_BLOCK;
pIOMState->block = 1;
pIOMState->ui32NumHPPendingEntries = 0;
break;
case AM_HAL_IOM_REQ_END_BLOCK:
// Unblock the whole batch of commands in this block
IOMn(pIOMState->ui32Module)->CQSETCLEAR = AM_HAL_IOM_SC_UNPAUSE_BLOCK;
pIOMState->block = 0;
if (pIOMState->ui32NumHPPendingEntries)
{
// Now it is okay to let go of the block of HiPrio transactions
status = sched_hiprio(pIOMState, pIOMState->ui32NumHPPendingEntries);
if (status == AM_HAL_STATUS_SUCCESS)
{
pIOMState->ui32NumHPPendingEntries = 0;
}
}
break;
case AM_HAL_IOM_REQ_SET_DCX:
{
am_hal_iom_dcx_cfg_t *pDcxCfg = (am_hal_iom_dcx_cfg_t *)pArgs;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!pDcxCfg)
{
return AM_HAL_STATUS_INVALID_ARG;
}
if ((pIOMState->eInterfaceMode != AM_HAL_IOM_SPI_MODE) ||
(pDcxCfg->cs == pDcxCfg->dcx) ||
(pDcxCfg->cs > AM_HAL_IOM_MAX_CS_SPI) ||
((pDcxCfg->dcx != AM_HAL_IOM_DCX_INVALID) && (pDcxCfg->dcx > AM_HAL_IOM_MAX_CS_SPI)))
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
if ( !APOLLO3_GE_B0 )
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
pIOMState->dcx[pDcxCfg->cs] = (pDcxCfg->dcx == AM_HAL_IOM_DCX_INVALID) ? 0 : (IOM0_DCX_DCXEN_Msk | (0x1 << pDcxCfg->dcx));
break;
}
case AM_HAL_IOM_REQ_CQ_RAW:
{
am_hal_iom_cq_raw_t *pCqRaw = (am_hal_iom_cq_raw_t *)pArgs;
am_hal_cmdq_entry_t *pCQBlock;
am_hal_iom_callback_t pfnCallback1;
uint32_t ui32Critical = 0;
uint32_t index;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (!pCqRaw)
{
return AM_HAL_STATUS_INVALID_ARG;
}
if (!pIOMState->pCmdQHdl)
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
//
// Check to see if there is enough room in the CQ
//
if ((pIOMState->ui32NumPendTransactions == AM_HAL_IOM_MAX_PENDING_TRANSACTIONS) ||
(am_hal_cmdq_alloc_block(pIOMState->pCmdQHdl, pCqRaw->numEntries + 3, &pCQBlock, &index)))
{
return AM_HAL_STATUS_OUT_OF_RANGE;
}
pCQBlock->address = (uint32_t)&IOMn(pIOMState->ui32Module)->CQPAUSEEN;
pCQBlock->value = get_pause_val(pIOMState, pCqRaw->ui32PauseCondition);
pCQBlock++;
for (uint32_t i = 0; i < pCqRaw->numEntries; i++, pCQBlock++)
{
pCQBlock->address = pCqRaw->pCQEntry[i].address;
pCQBlock->value = pCqRaw->pCQEntry[i].value;
}
// If there is a need - populate the jump back address
if (pCqRaw->pJmpAddr)
{
*(pCqRaw->pJmpAddr) = (uint32_t)pCQBlock;
}
pCQBlock->address = (uint32_t)&IOMn(pIOMState->ui32Module)->CQPAUSEEN;
pCQBlock->value = AM_HAL_IOM_PAUSE_DEFAULT;
pCQBlock++;
pCQBlock->address = (uint32_t)&IOMn(pIOMState->ui32Module)->CQSETCLEAR;
pCQBlock->value = pCqRaw->ui32StatusSetClr;
pfnCallback1 = pCqRaw->pfnCallback;
if (!pfnCallback1 && !pIOMState->block && (pIOMState->eSeq == AM_HAL_IOM_SEQ_NONE) &&
(pIOMState->ui32NumUnSolicited >= (pIOMState->ui32MaxPending / 2)))
{
// Need to schedule a dummy callback, to ensure ui32NumPendTransactions get updated in ISR
pfnCallback1 = iom_dummy_callback;
}
//
// Store the callback function pointer.
//
pIOMState->pfnCallback[index & (AM_HAL_IOM_MAX_PENDING_TRANSACTIONS - 1)] = pfnCallback1;
pIOMState->pCallbackCtxt[index & (AM_HAL_IOM_MAX_PENDING_TRANSACTIONS - 1)] = pCqRaw->pCallbackCtxt;
//
// Need to protect access of ui32NumPendTransactions as it is accessed
// from ISR as well
//
// Start a critical section.
//
ui32Critical = am_hal_interrupt_master_disable();
//
// Register for interrupt only if there is a callback
//
status = am_hal_cmdq_post_block(pIOMState->pCmdQHdl, pfnCallback1);
if (status == AM_HAL_STATUS_SUCCESS)
{
uint32_t ui32NumPend = pIOMState->ui32NumPendTransactions++;
pIOMState->ui32NumSeqTransactions++;
if (pCqRaw->pfnCallback)
{
pIOMState->bAutonomous = false;
pIOMState->ui32NumUnSolicited = 0;
}
else
{
if (pfnCallback1)
{
// This implies we have already scheduled a dummy callback
pIOMState->ui32NumUnSolicited = 0;
}
else
{
pIOMState->ui32NumUnSolicited++;
}
}
if (0 == ui32NumPend)
{
pIOMState->ui32UserIntCfg = IOMn(ui32Module)->INTEN;
IOM_SET_INTEN(ui32Module, AM_HAL_IOM_INT_CQMODE);
// Re-enable the CQ
am_hal_iom_CQEnable(pIOMState);
}
}
else
{
am_hal_cmdq_release_block(pIOMState->pCmdQHdl);
}
//
// End the critical section.
//
am_hal_interrupt_master_set(ui32Critical);
break;
}
default:
status = AM_HAL_STATUS_INVALID_ARG;
}
return status;
}
//
// IOM High Priority transfer function
//
uint32_t am_hal_iom_highprio_transfer(void *pHandle,
am_hal_iom_transfer_t *psTransaction,
am_hal_iom_callback_t pfnCallback,
void *pCallbackCtxt)
{
am_hal_iom_state_t *pIOMState = (am_hal_iom_state_t *)pHandle;
uint32_t ui32Status = AM_HAL_STATUS_SUCCESS;
#ifndef AM_HAL_DISABLE_API_VALIDATION
uint32_t ui32SRAMAddress;
//
// Check the handle.
//
if (!AM_HAL_IOM_CHK_HANDLE(pHandle))
{
return AM_HAL_STATUS_INVALID_HANDLE;
}
if (!pIOMState->pNBTxnBuf)
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
//
// Validate parameters
//
ui32Status = validate_transaction(pIOMState, psTransaction, false);
if (ui32Status != AM_HAL_STATUS_SUCCESS)
{
return ui32Status;
}
if (psTransaction->ui32PauseCondition != 0)
{
return AM_HAL_STATUS_INVALID_ARG;
}
if (psTransaction->ui32StatusSetClr != 0)
{
return AM_HAL_STATUS_INVALID_ARG;
}
if (psTransaction->eDirection > AM_HAL_IOM_RX)
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
if (!pIOMState->pHPTransactions)
{
return AM_HAL_STATUS_INVALID_OPERATION;
}
//
// Check for DMA to/from DTCM.
//
ui32SRAMAddress = (psTransaction->eDirection == AM_HAL_IOM_TX) ? (uint32_t)psTransaction->pui32TxBuffer : (uint32_t)psTransaction->pui32RxBuffer;
if ( (ui32SRAMAddress >= AM_HAL_FLASH_DTCM_START) &&
(ui32SRAMAddress <= AM_HAL_FLASH_DTCM_END) )
{
return AM_HAL_STATUS_OUT_OF_RANGE;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
ui32Status = iom_add_hp_transaction(pHandle, psTransaction, pfnCallback, pCallbackCtxt);
if (ui32Status == AM_HAL_STATUS_SUCCESS)
{
if (!(pIOMState->block))
{
ui32Status = sched_hiprio(pIOMState, 1);
}
else
{
pIOMState->ui32NumHPPendingEntries++;
}
}
//
// Return the status.
//
return ui32Status;
}
//*****************************************************************************
//
// End Doxygen group.
//! @}
//
//*****************************************************************************
//*****************************************************************************
//
// End Doxygen group.
//! @}
//
//*****************************************************************************