573 lines
19 KiB
C
Raw Normal View History

2022-10-23 23:45:43 -07:00
//*****************************************************************************
//
// am_hal_security.c
//! @file
//!
//! @brief Functions for on-chip security features
//!
//! @addtogroup
//! @ingroup apollo3hal
//! @{
//
//*****************************************************************************
//*****************************************************************************
//
// Copyright (c) 2020, Ambiq Micro
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from this
// software without specific prior written permission.
//
// Third party software included in this distribution is subject to the
// additional license terms as defined in the /docs/licenses directory.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// This is part of revision 2.4.2 of the AmbiqSuite Development Package.
//
//*****************************************************************************
#include <stdint.h>
#include <stdbool.h>
#include "am_mcu_apollo.h"
//*****************************************************************************
// Local defines.
//*****************************************************************************
//
// ENABLE_EXTMEM_CRC
// By default, the CRC engine can only operate on data located in internal
// memory (i.e. flash or SRAM). This define enables am_hal_crc() to support
// external memories, but requires a small amount of global SRAM allocated for
// that purpose. If it is not desired to support this feature, set to 0.
//
#define ENABLE_EXTMEM_CRC 1
//
// Maximum iterations for hardware CRC to finish
//
#define MAX_CRC_WAIT 100000
#define AM_HAL_SECURITY_LOCKSTAT_CUSTOMER 0x1
#define AM_HAL_SECURITY_LOCKSTAT_RECOVERY 0x40000000
//*****************************************************************************
//
// Globals
//
//*****************************************************************************
#if ENABLE_EXTMEM_CRC
//
// Set up a small global buffer that can be used am_hal_crc32() when
// computing CRCs on external memory.
//
#define CRC_XFERBUF_SZ (512) // Reserve 512 bytes for the buffer
static uint32_t g_CRC_buffer[CRC_XFERBUF_SZ / 4];
#endif // ENABLE_EXTMEM_CRC
//
// Assign ptr variables to avoid an issue with GCC reading from location 0x0.
//
const volatile uint32_t *g_pFlash0 = (uint32_t*)(AM_HAL_SBL_ADDRESS + 0);
const volatile uint32_t *g_pFlash4 = (uint32_t*)(AM_HAL_SBL_ADDRESS + 4);
//*****************************************************************************
//
//! @brief Hardcoded function - to Run supplied main program
//!
//! @param r0 = vtor - address of the vector table
//!
//! @return Returns None
//
//*****************************************************************************
#if (defined (__ARMCC_VERSION)) && (__ARMCC_VERSION < 6000000)
static __asm void
bl_run_main(uint32_t *vtor)
{
//
// Store the vector table pointer of the new image into VTOR.
//
movw r3, #0xED08
movt r3, #0xE000
str r0, [r3, #0]
//
// Load the new stack pointer into R1 and the new reset vector into R2.
//
ldr r3, [r0, #0]
ldr r2, [r0, #4]
//
// Set the stack pointer for the new image.
//
mov sp, r3
//
// Jump to the new reset vector.
//
bx r2
}
#elif (defined (__ARMCC_VERSION)) && (__ARMCC_VERSION >= 6000000)
__attribute__((naked))
static void
bl_run_main(uint32_t *vtor)
{
__asm
(
" movw r3, #0xED08\n\t" // Store the vector table pointer of the new image into VTOR.
" movt r3, #0xE000\n\t"
" str r0, [r3, #0]\n\t"
" ldr r3, [r0, #0]\n\t" // Load the new stack pointer into R1 and the new reset vector into R2.
" ldr r2, [r0, #4]\n\t"
" mov sp, r3\n\t" // Set the stack pointer for the new image.
" bx r2\n\t" // Jump to the new reset vector.
);
}
#elif defined(__GNUC_STDC_INLINE__)
__attribute__((naked))
static void
bl_run_main(uint32_t *vtor)
{
__asm
(
" movw r3, #0xED08\n\t" // Store the vector table pointer of the new image into VTOR.
" movt r3, #0xE000\n\t"
" str r0, [r3, #0]\n\t"
" ldr r3, [r0, #0]\n\t" // Load the new stack pointer into R1 and the new reset vector into R2.
" ldr r2, [r0, #4]\n\t"
" mov sp, r3\n\t" // Set the stack pointer for the new image.
" bx r2\n\t" // Jump to the new reset vector.
);
}
#elif defined(__IAR_SYSTEMS_ICC__)
__stackless static inline void
bl_run_main(uint32_t *vtor)
{
__asm volatile (
" movw r3, #0xED08\n" // Store the vector table pointer of the new image into VTOR.
" movt r3, #0xE000\n"
" str r0, [r3, #0]\n"
" ldr r3, [r0, #0]\n" // Load the new stack pointer into R1 and the new reset vector into R2.
" ldr r2, [r0, #4]\n"
" mov sp, r3\n" // Set the stack pointer for the new image.
" bx r2\n" // Jump to the new reset vector.
);
}
#else
#error Compiler is unknown, please contact Ambiq support team
#endif
// Pre- SBLv2 known versions that do not support callback
static uint32_t sblPreV2[][4] = {
// flash0, flash4, sblVersion, sblVersionAddInfo
{0xA3007860, 0x2E2638FB, 0 , 0},
{0xA3007E14, 0x5EE4E461, 1 , 0},
{0xA3008290, 0xB49CECD5, 2 , 0},
};
//*****************************************************************************
//
//! @brief Get Device Security Info
//!
//! @param pSecInfo - Pointer to structure for returned security info
//!
//! This will retrieve the security information for the device
//!
//! @return Returns AM_HAL_STATUS_SUCCESS on success
//
//*****************************************************************************
uint32_t am_hal_security_get_info(am_hal_security_info_t *pSecInfo)
{
uint32_t flash0;
uint32_t flash4;
uint32_t i;
bool bSbl;
if (!pSecInfo)
{
return AM_HAL_STATUS_INVALID_ARG;
}
pSecInfo->info0Version = AM_REGVAL(0x50020040);
pSecInfo->bInfo0Valid = MCUCTRL->SHADOWVALID_b.INFO0_VALID;
bSbl = MCUCTRL->BOOTLOADER_b.SECBOOTFEATURE;
if (bSbl)
{
// Check if we're running pre-SBLv2
flash0 = *g_pFlash0;
flash4 = *g_pFlash4;
// Check if SBL is installed
if ((flash0 >> 24) != AM_IMAGE_MAGIC_SBL)
{
return AM_HAL_STATUS_FAIL;
}
for ( i = 0; i < sizeof(sblPreV2) / sizeof(sblPreV2[0]); i++ )
{
if ((sblPreV2[i][0] == flash0) && (sblPreV2[i][1] == flash4))
{
// This is a device prior to SBLv2
pSecInfo->sblVersion = sblPreV2[i][2];
pSecInfo->sblVersionAddInfo = sblPreV2[i][3];
break;
}
}
if ( i == sizeof(sblPreV2) / sizeof(sblPreV2[0]) )
{
// SBLv2 or beyond
// Use SBL jump table function
uint32_t status;
uint32_t sblVersion;
uint32_t (*pFuncVersion)(uint32_t *) = (uint32_t (*)(uint32_t *))(AM_HAL_SBL_ADDRESS + 0x1D1);
status = pFuncVersion(&sblVersion);
if (status != AM_HAL_STATUS_SUCCESS)
{
return status;
}
pSecInfo->sblVersion = sblVersion & 0x7FFF;
pSecInfo->sblVersionAddInfo = sblVersion >> 15;
}
}
else
{
return AM_HAL_STATUS_FAIL;
}
return AM_HAL_STATUS_SUCCESS;
} // am_hal_security_get_info()
//*****************************************************************************
//
//! @brief Set the key for specified lock
//!
//! @param lockType - The lock type to be operated upon
//! @param pKey - Pointer to 128b key value
//!
//! This will program the lock registers for the specified lock and key
//!
//! @return Returns AM_HAL_STATUS_SUCCESS on success
//
//*****************************************************************************
uint32_t am_hal_security_set_key(am_hal_security_locktype_t lockType, am_hal_security_128bkey_t *pKey)
{
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (pKey == NULL)
{
return AM_HAL_STATUS_INVALID_ARG;
}
switch (lockType)
{
case AM_HAL_SECURITY_LOCKTYPE_CUSTOMER:
case AM_HAL_SECURITY_LOCKTYPE_RECOVERY:
break;
default:
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
SECURITY->LOCKCTRL = lockType;
SECURITY->KEY0 = pKey->keys.key0;
SECURITY->KEY1 = pKey->keys.key1;
SECURITY->KEY2 = pKey->keys.key2;
SECURITY->KEY3 = pKey->keys.key3;
return AM_HAL_STATUS_SUCCESS;
} // am_hal_security_set_key()
//*****************************************************************************
//
//! @brief Get the current status of the specified lock
//!
//! @param lockType - The lock type to be operated upon
//! @param pbUnlockStatus - Pointer to return variable with lock status
//!
//! This will get the lock status for specified lock - true implies unlocked
//! Note that except for customer lock, other locks are self-locking on status read
//!
//! @return Returns AM_HAL_STATUS_SUCCESS on success
//
//*****************************************************************************
uint32_t am_hal_security_get_lock_status(am_hal_security_locktype_t lockType, bool *pbUnlockStatus)
{
uint32_t unlockMask;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (pbUnlockStatus == NULL)
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
switch (lockType)
{
case AM_HAL_SECURITY_LOCKTYPE_CUSTOMER:
unlockMask = AM_HAL_SECURITY_LOCKSTAT_CUSTOMER;
break;
case AM_HAL_SECURITY_LOCKTYPE_RECOVERY:
unlockMask = AM_HAL_SECURITY_LOCKSTAT_RECOVERY;
break;
default:
return AM_HAL_STATUS_INVALID_ARG;
}
*pbUnlockStatus = SECURITY->LOCKSTAT & unlockMask;
return AM_HAL_STATUS_SUCCESS;
} // am_hal_security_get_lock_status()
//*****************************************************************************
//
//! @brief Compute CRC32 for a specified payload
//!
//! @param ui32StartAddr - The start address of the payload.
//! @param ui32SizeBytes - The length of payload in bytes.
//! @param pui32Crc - Pointer to variable to return the computed CRC.
//!
//! This function uses the hardware engine to compute CRC32 on an arbitrary data
//! payload. The payload can reside in any contiguous memory including external
//! memory.
//!
//! @return Returns AM_HAL_STATUS_SUCCESS on success
//
//*****************************************************************************
uint32_t
am_hal_crc32(uint32_t ui32StartAddr, uint32_t ui32SizeBytes, uint32_t *pui32Crc)
{
uint32_t status, ui32CRC32;
bool bInternal;
#ifndef AM_HAL_DISABLE_API_VALIDATION
if (pui32Crc == NULL)
{
return AM_HAL_STATUS_INVALID_ARG;
}
//
// Make sure size is multiple of 4 bytes
//
if (ui32SizeBytes & 0x3)
{
return AM_HAL_STATUS_INVALID_ARG;
}
#endif // AM_HAL_DISABLE_API_VALIDATION
status = AM_HAL_STATUS_OUT_OF_RANGE; // Default status
//
// Determine whether the startaddr is in internal flash or SRAM.
//
bInternal = ISADDRFLASH(ui32StartAddr) || ISADDRSRAM(ui32StartAddr);
if ( bInternal )
{
//
// Program the CRC engine to compute the crc
//
ui32CRC32 = 0xFFFFFFFF;
SECURITY->RESULT = ui32CRC32;
SECURITY->SRCADDR = ui32StartAddr;
SECURITY->LEN = ui32SizeBytes;
SECURITY->CTRL_b.FUNCTION = SECURITY_CTRL_FUNCTION_CRC32;
//
// Start the CRC
//
SECURITY->CTRL_b.ENABLE = 1;
//
// Wait for CRC to finish
//
status = am_hal_flash_delay_status_change(MAX_CRC_WAIT,
(uint32_t)&SECURITY->CTRL, SECURITY_CTRL_ENABLE_Msk, 0);
if (status == AM_HAL_STATUS_SUCCESS)
{
*pui32Crc = SECURITY->RESULT;
}
return status;
}
#if ENABLE_EXTMEM_CRC
uint32_t ui32XferSize, ui32cnt;
uint32_t *pui32Buf, *pui32Data;
//
// If we're here, the source data resides in non-internal memory (that is,
// not flash or SRAM).
//
// Begin the loop for computing the CRC of the external memory. The data
// will first be copied to the SRAM buffer.
//
// Program the parts of the CRC engine that will not need to change
// inside the loop: SRCADDR, FUNCTION, initial seed in RESULT.
// While inside the loop, only the LEN will need to be provided.
//
SECURITY->SRCADDR = (uint32_t)&g_CRC_buffer[0];
SECURITY->CTRL_b.FUNCTION = SECURITY_CTRL_FUNCTION_CRC32;
//
// During the loop the RESULT register must not be rewritten, even if the
// value written on each pass is identical. Rewriting it appears to reset
// a state machine such that an incorrect CRC value is computed.
//
ui32CRC32 = 0xFFFFFFFF;
SECURITY->RESULT = ui32CRC32;
pui32Data = (uint32_t*)ui32StartAddr;
while ( ui32SizeBytes )
{
//
// First copy a chunk of payload data to SRAM where the CRC engine
// can operate on it.
//
ui32XferSize = (ui32SizeBytes >= CRC_XFERBUF_SZ) ?
CRC_XFERBUF_SZ : ui32SizeBytes;
ui32SizeBytes -= ui32XferSize;
ui32cnt = ui32XferSize / 4;
pui32Buf = &g_CRC_buffer[0];
while ( ui32cnt-- )
{
*pui32Buf++ = *pui32Data++;
}
//
// Program the CRC engine's LEN parameter.
// All other parameters were preprogrammed: SRCADDR, FUNCTION, RESULT.
//
SECURITY->LEN = ui32XferSize;
//
// Start the CRC
//
SECURITY->CTRL_b.ENABLE = 1;
//
// Wait for CRC to finish
//
status = am_hal_flash_delay_status_change(MAX_CRC_WAIT,
(uint32_t)&SECURITY->CTRL, SECURITY_CTRL_ENABLE_Msk, 0);
if ( (status == AM_HAL_STATUS_SUCCESS) && !SECURITY->CTRL_b.CRCERROR )
{
ui32CRC32 = SECURITY->RESULT;
}
else if ( SECURITY->CTRL_b.CRCERROR )
{
return AM_HAL_STATUS_HW_ERR;
}
else
{
//
// Error from status_change function.
// Return the CRC value we do have, but return an error.
//
//return status;
break;
}
}
//
// Return result to caller
//
*pui32Crc = ui32CRC32;
#endif // ENABLE_EXTMEM_CRC
return status;
} // am_hal_crc32()
//*****************************************************************************
//
//! @brief Helper function to Perform exit operations for a secondary bootloader
//!
//! @param pImage - The address of the image to give control to
//!
//! This function does the necessary security operations while exiting from a
//! a secondary bootloader program. If still open, it locks the info0 key region,
//! as well as further updates to the flash protection register.
//! It also checks if it needs to halt to honor a debugger request.
//! If an image address is specified, control is transferred to the same on exit.
//!
//! @return Returns AM_HAL_STATUS_SUCCESS on success, if no image address specified
//! If an image address is provided, a successful execution results in transfer to
//! the image - and this function does not return.
//
//*****************************************************************************
uint32_t am_hal_bootloader_exit(uint32_t *pImage)
{
uint32_t status = AM_HAL_STATUS_SUCCESS;
//
// Lock the assets
//
if ( MCUCTRL->SHADOWVALID_b.INFO0_VALID &&
MCUCTRL->BOOTLOADER_b.PROTLOCK )
{
am_hal_security_128bkey_t keyVal;
uint32_t *pCustKey = (uint32_t *)0x50021A00;
bool bLockStatus;
//
// PROTLOCK Open
// This should also mean that Customer key is accessible
// Now lock the key by writing an incorrect value
//
keyVal.keyword[0] = ~pCustKey[0];
am_hal_security_set_key(AM_HAL_SECURITY_LOCKTYPE_CUSTOMER, &keyVal);
status = am_hal_security_get_lock_status(AM_HAL_SECURITY_LOCKTYPE_CUSTOMER, &bLockStatus);
if ((status != AM_HAL_STATUS_SUCCESS) || (bLockStatus))
{
return AM_HAL_STATUS_FAIL;
}
//
// Lock the protection register to prevent further region locking
// CAUTION!!! - Can not do AM_BFW on BOOTLOADER register as all writable bits in this register are Write 1 to clear
//
MCUCTRL->BOOTLOADER = _VAL2FLD(MCUCTRL_BOOTLOADER_PROTLOCK, 1);
//
// Check if we need to halt (debugger request)
//
if (MCUCTRL->SCRATCH0 & 0x1)
{
// Debugger wants to halt
uint32_t dhcsr = AM_REGVAL(0xE000EDF0);
// Clear the flag in Scratch register
MCUCTRL->SCRATCH0 &= ~0x1;
// Halt the core
dhcsr = ((uint32_t)0xA05F << 16) | (dhcsr & 0xFFFF) | 0x3;
AM_REGVAL(0xE000EDF0) = dhcsr;
// Resume from halt
}
}
// Give control to supplied image
if (pImage)
{
bl_run_main(pImage);
// Does not return
}
return status;
} // am_hal_bootloader_exit()