ryujinx/Ryujinx.Graphics.Shader/StructuredIr/StructuredProgram.cs
gdkchan 49f970d5bd
Implement CAL and RET shader instructions (#1618)
* Add support for CAL and RET shader instructions

* Remove unused stuff

* Fix a bug that could cause the wrong values to be passed to a function

* Avoid repopulating function id dictionary every time

* PR feedback

* Fix vertex shader A/B merge
2020-10-25 17:00:44 -03:00

417 lines
14 KiB
C#

using Ryujinx.Graphics.Shader.IntermediateRepresentation;
using Ryujinx.Graphics.Shader.Translation;
using System;
using System.Collections.Generic;
using System.Numerics;
namespace Ryujinx.Graphics.Shader.StructuredIr
{
static class StructuredProgram
{
public static StructuredProgramInfo MakeStructuredProgram(Function[] functions, ShaderConfig config)
{
StructuredProgramContext context = new StructuredProgramContext(config);
for (int funcIndex = 0; funcIndex < functions.Length; funcIndex++)
{
Function function = functions[funcIndex];
BasicBlock[] blocks = function.Blocks;
VariableType returnType = function.ReturnsValue ? VariableType.S32 : VariableType.None;
VariableType[] inArguments = new VariableType[function.InArgumentsCount];
VariableType[] outArguments = new VariableType[function.OutArgumentsCount];
for (int i = 0; i < inArguments.Length; i++)
{
inArguments[i] = VariableType.S32;
}
for (int i = 0; i < outArguments.Length; i++)
{
outArguments[i] = VariableType.S32;
}
context.EnterFunction(blocks.Length, function.Name, returnType, inArguments, outArguments);
PhiFunctions.Remove(blocks);
for (int blkIndex = 0; blkIndex < blocks.Length; blkIndex++)
{
BasicBlock block = blocks[blkIndex];
context.EnterBlock(block);
for (LinkedListNode<INode> opNode = block.Operations.First; opNode != null; opNode = opNode.Next)
{
Operation operation = (Operation)opNode.Value;
if (IsBranchInst(operation.Inst))
{
context.LeaveBlock(block, operation);
}
else if (operation.Inst != Instruction.CallOutArgument)
{
AddOperation(context, opNode);
}
}
}
GotoElimination.Eliminate(context.GetGotos());
AstOptimizer.Optimize(context);
context.LeaveFunction();
}
return context.Info;
}
private static void AddOperation(StructuredProgramContext context, LinkedListNode<INode> opNode)
{
Operation operation = (Operation)opNode.Value;
Instruction inst = operation.Inst;
bool isCall = inst == Instruction.Call;
int sourcesCount = operation.SourcesCount;
List<Operand> callOutOperands = new List<Operand>();
if (isCall)
{
LinkedListNode<INode> scan = opNode.Next;
while (scan != null && scan.Value is Operation nextOp && nextOp.Inst == Instruction.CallOutArgument)
{
callOutOperands.Add(nextOp.Dest);
scan = scan.Next;
}
sourcesCount += callOutOperands.Count;
}
IAstNode[] sources = new IAstNode[sourcesCount];
for (int index = 0; index < operation.SourcesCount; index++)
{
sources[index] = context.GetOperandUse(operation.GetSource(index));
}
if (isCall)
{
for (int index = 0; index < callOutOperands.Count; index++)
{
sources[operation.SourcesCount + index] = context.GetOperandDef(callOutOperands[index]);
}
callOutOperands.Clear();
}
AstTextureOperation GetAstTextureOperation(TextureOperation texOp)
{
return new AstTextureOperation(
inst,
texOp.Type,
texOp.Format,
texOp.Flags,
texOp.Handle,
4, // TODO: Non-hardcoded array size.
texOp.Index,
sources);
}
if (operation.Dest != null)
{
AstOperand dest = context.GetOperandDef(operation.Dest);
if (inst == Instruction.LoadConstant)
{
Operand slot = operation.GetSource(0);
if (slot.Type == OperandType.Constant)
{
context.Info.CBuffers.Add(slot.Value);
}
else
{
// If the value is not constant, then we don't know
// how many constant buffers are used, so we assume
// all of them are used.
int cbCount = 32 - BitOperations.LeadingZeroCount(context.Config.GpuAccessor.QueryConstantBufferUse());
for (int index = 0; index < cbCount; index++)
{
context.Info.CBuffers.Add(index);
}
context.Info.UsesCbIndexing = true;
}
}
else if (UsesStorage(inst))
{
AddSBufferUse(context.Info.SBuffers, operation);
}
// If all the sources are bool, it's better to use short-circuiting
// logical operations, rather than forcing a cast to int and doing
// a bitwise operation with the value, as it is likely to be used as
// a bool in the end.
if (IsBitwiseInst(inst) && AreAllSourceTypesEqual(sources, VariableType.Bool))
{
inst = GetLogicalFromBitwiseInst(inst);
}
bool isCondSel = inst == Instruction.ConditionalSelect;
bool isCopy = inst == Instruction.Copy;
if (isCondSel || isCopy)
{
VariableType type = GetVarTypeFromUses(operation.Dest);
if (isCondSel && type == VariableType.F32)
{
inst |= Instruction.FP32;
}
dest.VarType = type;
}
else
{
dest.VarType = InstructionInfo.GetDestVarType(inst);
}
IAstNode source;
if (operation is TextureOperation texOp)
{
if (texOp.Inst == Instruction.ImageLoad || texOp.Inst == Instruction.ImageStore)
{
dest.VarType = texOp.Format.GetComponentType();
}
AstTextureOperation astTexOp = GetAstTextureOperation(texOp);
if (texOp.Inst == Instruction.ImageLoad)
{
context.Info.Images.Add(astTexOp);
}
else
{
context.Info.Samplers.Add(astTexOp);
}
source = astTexOp;
}
else if (!isCopy)
{
source = new AstOperation(inst, operation.Index, sources, operation.SourcesCount);
}
else
{
source = sources[0];
}
context.AddNode(new AstAssignment(dest, source));
}
else if (operation.Inst == Instruction.Comment)
{
context.AddNode(new AstComment(((CommentNode)operation).Comment));
}
else if (operation is TextureOperation texOp)
{
AstTextureOperation astTexOp = GetAstTextureOperation(texOp);
context.Info.Images.Add(astTexOp);
context.AddNode(astTexOp);
}
else
{
if (UsesStorage(inst))
{
AddSBufferUse(context.Info.SBuffers, operation);
}
context.AddNode(new AstOperation(inst, operation.Index, sources, operation.SourcesCount));
}
// Those instructions needs to be emulated by using helper functions,
// because they are NVIDIA specific. Those flags helps the backend to
// decide which helper functions are needed on the final generated code.
switch (operation.Inst)
{
case Instruction.MultiplyHighS32:
context.Info.HelperFunctionsMask |= HelperFunctionsMask.MultiplyHighS32;
break;
case Instruction.MultiplyHighU32:
context.Info.HelperFunctionsMask |= HelperFunctionsMask.MultiplyHighU32;
break;
case Instruction.Shuffle:
context.Info.HelperFunctionsMask |= HelperFunctionsMask.Shuffle;
break;
case Instruction.ShuffleDown:
context.Info.HelperFunctionsMask |= HelperFunctionsMask.ShuffleDown;
break;
case Instruction.ShuffleUp:
context.Info.HelperFunctionsMask |= HelperFunctionsMask.ShuffleUp;
break;
case Instruction.ShuffleXor:
context.Info.HelperFunctionsMask |= HelperFunctionsMask.ShuffleXor;
break;
case Instruction.SwizzleAdd:
context.Info.HelperFunctionsMask |= HelperFunctionsMask.SwizzleAdd;
break;
}
}
private static void AddSBufferUse(HashSet<int> sBuffers, Operation operation)
{
Operand slot = operation.GetSource(0);
if (slot.Type == OperandType.Constant)
{
sBuffers.Add(slot.Value);
}
else
{
// If the value is not constant, then we don't know
// how many storage buffers are used, so we assume
// all of them are used.
for (int index = 0; index < GlobalMemory.StorageMaxCount; index++)
{
sBuffers.Add(index);
}
}
}
private static VariableType GetVarTypeFromUses(Operand dest)
{
HashSet<Operand> visited = new HashSet<Operand>();
Queue<Operand> pending = new Queue<Operand>();
bool Enqueue(Operand operand)
{
if (visited.Add(operand))
{
pending.Enqueue(operand);
return true;
}
return false;
}
Enqueue(dest);
while (pending.TryDequeue(out Operand operand))
{
foreach (INode useNode in operand.UseOps)
{
if (!(useNode is Operation operation))
{
continue;
}
if (operation.Inst == Instruction.Copy)
{
if (operation.Dest.Type == OperandType.LocalVariable)
{
if (Enqueue(operation.Dest))
{
break;
}
}
else
{
return OperandInfo.GetVarType(operation.Dest.Type);
}
}
else
{
for (int index = 0; index < operation.SourcesCount; index++)
{
if (operation.GetSource(index) == operand)
{
return InstructionInfo.GetSrcVarType(operation.Inst, index);
}
}
}
}
}
return VariableType.S32;
}
private static bool AreAllSourceTypesEqual(IAstNode[] sources, VariableType type)
{
foreach (IAstNode node in sources)
{
if (!(node is AstOperand operand))
{
return false;
}
if (operand.VarType != type)
{
return false;
}
}
return true;
}
private static bool IsBranchInst(Instruction inst)
{
switch (inst)
{
case Instruction.Branch:
case Instruction.BranchIfFalse:
case Instruction.BranchIfTrue:
return true;
}
return false;
}
private static bool IsBitwiseInst(Instruction inst)
{
switch (inst)
{
case Instruction.BitwiseAnd:
case Instruction.BitwiseExclusiveOr:
case Instruction.BitwiseNot:
case Instruction.BitwiseOr:
return true;
}
return false;
}
private static Instruction GetLogicalFromBitwiseInst(Instruction inst)
{
switch (inst)
{
case Instruction.BitwiseAnd: return Instruction.LogicalAnd;
case Instruction.BitwiseExclusiveOr: return Instruction.LogicalExclusiveOr;
case Instruction.BitwiseNot: return Instruction.LogicalNot;
case Instruction.BitwiseOr: return Instruction.LogicalOr;
}
throw new ArgumentException($"Unexpected instruction \"{inst}\".");
}
private static bool UsesStorage(Instruction inst)
{
if (inst == Instruction.LoadStorage || inst == Instruction.StoreStorage)
{
return true;
}
return inst.IsAtomic() && (inst & Instruction.MrMask) == Instruction.MrStorage;
}
}
}