ryujinx/Ryujinx.HLE/HOS/Kernel/SupervisorCall/Syscall32.cs

501 lines
17 KiB
C#
Raw Normal View History

using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Memory;
using Ryujinx.HLE.HOS.Kernel.Threading;
namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
{
class Syscall32
{
private readonly Syscall _syscall;
public Syscall32(Syscall syscall)
{
_syscall = syscall;
}
// IPC
public KernelResult ConnectToNamedPort32([R(1)] uint namePtr, [R(1)] out int handle)
{
return _syscall.ConnectToNamedPort(namePtr, out handle);
}
public KernelResult SendSyncRequest32([R(0)] int handle)
{
return _syscall.SendSyncRequest(handle);
}
public KernelResult SendSyncRequestWithUserBuffer32([R(0)] uint messagePtr, [R(1)] uint messageSize, [R(2)] int handle)
{
return _syscall.SendSyncRequestWithUserBuffer(messagePtr, messageSize, handle);
}
public KernelResult CreateSession32(
[R(2)] bool isLight,
[R(3)] uint namePtr,
[R(1)] out int serverSessionHandle,
[R(2)] out int clientSessionHandle)
{
return _syscall.CreateSession(isLight, namePtr, out serverSessionHandle, out clientSessionHandle);
}
public KernelResult AcceptSession32([R(1)] int portHandle, [R(1)] out int sessionHandle)
{
return _syscall.AcceptSession(portHandle, out sessionHandle);
}
public KernelResult ReplyAndReceive32(
[R(0)] uint timeoutLow,
[R(1)] ulong handlesPtr,
[R(2)] int handlesCount,
[R(3)] int replyTargetHandle,
[R(4)] uint timeoutHigh,
[R(1)] out int handleIndex)
{
long timeout = (long)(timeoutLow | ((ulong)timeoutHigh << 32));
return _syscall.ReplyAndReceive(handlesPtr, handlesCount, replyTargetHandle, timeout, out handleIndex);
}
public KernelResult CreatePort32(
[R(0)] uint namePtr,
[R(2)] int maxSessions,
[R(3)] bool isLight,
[R(1)] out int serverPortHandle,
[R(2)] out int clientPortHandle)
{
return _syscall.CreatePort(maxSessions, isLight, namePtr, out serverPortHandle, out clientPortHandle);
}
public KernelResult ManageNamedPort32([R(1)] uint namePtr, [R(2)] int maxSessions, [R(1)] out int handle)
{
return _syscall.ManageNamedPort(namePtr, maxSessions, out handle);
}
public KernelResult ConnectToPort32([R(1)] int clientPortHandle, [R(1)] out int clientSessionHandle)
{
return _syscall.ConnectToPort(clientPortHandle, out clientSessionHandle);
}
// Memory
public KernelResult SetHeapSize32([R(1)] uint size, [R(1)] out uint position)
{
KernelResult result = _syscall.SetHeapSize(size, out ulong temporaryPosition);
position = (uint)temporaryPosition;
return result;
}
public KernelResult SetMemoryPermission32(
[R(0)] ulong position,
[R(1)] ulong size,
[R(2)] KMemoryPermission permission)
{
return _syscall.SetMemoryPermission(position, size, permission);
}
public KernelResult SetMemoryAttribute32(
[R(0)] uint position,
[R(1)] uint size,
[R(2)] MemoryAttribute attributeMask,
[R(3)] MemoryAttribute attributeValue)
{
return _syscall.SetMemoryAttribute(position, size, attributeMask, attributeValue);
}
public KernelResult MapMemory32([R(0)] uint dst, [R(1)] uint src, [R(2)] uint size)
{
return _syscall.MapMemory(dst, src, size);
}
public KernelResult UnmapMemory32([R(0)] uint dst, [R(1)] uint src, [R(2)] uint size)
{
return _syscall.UnmapMemory(dst, src, size);
}
public KernelResult QueryMemory32([R(0)] uint infoPtr, [R(1)] uint r1, [R(2)] uint position, [R(1)] out uint pageInfo)
{
KernelResult result = _syscall.QueryMemory(infoPtr, position, out ulong pageInfo64);
pageInfo = (uint)pageInfo64;
return result;
}
public KernelResult MapSharedMemory32([R(0)] int handle, [R(1)] uint address, [R(2)] uint size, [R(3)] KMemoryPermission permission)
{
return _syscall.MapSharedMemory(handle, address, size, permission);
}
public KernelResult UnmapSharedMemory32([R(0)] int handle, [R(1)] uint address, [R(2)] uint size)
{
return _syscall.UnmapSharedMemory(handle, address, size);
}
public KernelResult CreateTransferMemory32(
[R(1)] uint address,
[R(2)] uint size,
[R(3)] KMemoryPermission permission,
[R(1)] out int handle)
{
return _syscall.CreateTransferMemory(address, size, permission, out handle);
}
public KernelResult MapTransferMemory32([R(0)] int handle, [R(1)] uint address, [R(2)] uint size, [R(3)] KMemoryPermission permission)
{
return _syscall.MapTransferMemory(handle, address, size, permission);
}
public KernelResult UnmapTransferMemory32([R(0)] int handle, [R(1)] uint address, [R(2)] uint size)
{
return _syscall.UnmapTransferMemory(handle, address, size);
}
public KernelResult MapPhysicalMemory32([R(0)] uint address, [R(1)] uint size)
{
return _syscall.MapPhysicalMemory(address, size);
}
public KernelResult UnmapPhysicalMemory32([R(0)] uint address, [R(1)] uint size)
{
return _syscall.UnmapPhysicalMemory(address, size);
}
public KernelResult MapProcessCodeMemory32([R(0)] int handle, [R(1)] uint srcLow, [R(2)] uint dstLow, [R(3)] uint dstHigh, [R(4)] uint srcHigh, [R(5)] uint sizeLow, [R(6)] uint sizeHigh)
{
ulong src = srcLow | ((ulong)srcHigh << 32);
ulong dst = dstLow | ((ulong)dstHigh << 32);
ulong size = sizeLow | ((ulong)sizeHigh << 32);
return _syscall.MapProcessCodeMemory(handle, dst, src, size);
}
public KernelResult UnmapProcessCodeMemory32([R(0)] int handle, [R(1)] uint srcLow, [R(2)] uint dstLow, [R(3)] uint dstHigh, [R(4)] uint srcHigh, [R(5)] uint sizeLow, [R(6)] uint sizeHigh)
{
ulong src = srcLow | ((ulong)srcHigh << 32);
ulong dst = dstLow | ((ulong)dstHigh << 32);
ulong size = sizeLow | ((ulong)sizeHigh << 32);
return _syscall.UnmapProcessCodeMemory(handle, dst, src, size);
}
public KernelResult SetProcessMemoryPermission32(
[R(0)] int handle,
[R(1)] uint sizeLow,
[R(2)] uint srcLow,
[R(3)] uint srcHigh,
[R(4)] uint sizeHigh,
[R(5)] KMemoryPermission permission)
{
ulong src = srcLow | ((ulong)srcHigh << 32);
ulong size = sizeLow | ((ulong)sizeHigh << 32);
return _syscall.SetProcessMemoryPermission(handle, src, size, permission);
}
// System
public void ExitProcess32()
{
_syscall.ExitProcess();
}
public KernelResult TerminateProcess32([R(0)] int handle)
{
return _syscall.TerminateProcess(handle);
}
public KernelResult SignalEvent32([R(0)] int handle)
{
return _syscall.SignalEvent(handle);
}
public KernelResult ClearEvent32([R(0)] int handle)
{
return _syscall.ClearEvent(handle);
}
public KernelResult CloseHandle32([R(0)] int handle)
{
return _syscall.CloseHandle(handle);
}
public KernelResult ResetSignal32([R(0)] int handle)
{
return _syscall.ResetSignal(handle);
}
public void GetSystemTick32([R(0)] out uint resultLow, [R(1)] out uint resultHigh)
{
ulong result = _syscall.GetSystemTick();
resultLow = (uint)(result & uint.MaxValue);
resultHigh = (uint)(result >> 32);
}
public KernelResult GetProcessId32([R(1)] int handle, [R(1)] out int pidLow, [R(2)] out int pidHigh)
{
KernelResult result = _syscall.GetProcessId(handle, out long pid);
pidLow = (int)(pid & uint.MaxValue);
pidHigh = (int)(pid >> 32);
return result;
}
public void Break32([R(0)] uint reason, [R(1)] uint r1, [R(2)] uint info)
{
_syscall.Break(reason);
}
public void OutputDebugString32([R(0)] uint strPtr, [R(1)] uint size)
{
_syscall.OutputDebugString(strPtr, size);
}
public KernelResult GetInfo32(
[R(0)] uint subIdLow,
[R(1)] InfoType id,
[R(2)] int handle,
[R(3)] uint subIdHigh,
[R(1)] out uint valueLow,
[R(2)] out uint valueHigh)
{
long subId = (long)(subIdLow | ((ulong)subIdHigh << 32));
KernelResult result = _syscall.GetInfo(id, handle, subId, out long value);
valueHigh = (uint)(value >> 32);
valueLow = (uint)(value & uint.MaxValue);
return result;
}
public KernelResult CreateEvent32([R(1)] out int wEventHandle, [R(2)] out int rEventHandle)
{
return _syscall.CreateEvent(out wEventHandle, out rEventHandle);
}
public KernelResult GetProcessList32([R(1)] ulong address, [R(2)] int maxCount, [R(1)] out int count)
{
return _syscall.GetProcessList(address, maxCount, out count);
}
public KernelResult GetSystemInfo32([R(1)] uint subIdLow, [R(2)] uint id, [R(3)] int handle, [R(3)] uint subIdHigh, [R(1)] out int valueLow, [R(2)] out int valueHigh)
{
long subId = (long)(subIdLow | ((ulong)subIdHigh << 32));
KernelResult result = _syscall.GetSystemInfo(id, handle, subId, out long value);
valueHigh = (int)(value >> 32);
valueLow = (int)(value & uint.MaxValue);
return result;
}
public KernelResult GetResourceLimitLimitValue32([R(1)] int handle, [R(2)] LimitableResource resource, [R(1)] out int limitValueLow, [R(2)] out int limitValueHigh)
{
KernelResult result = _syscall.GetResourceLimitLimitValue(handle, resource, out long limitValue);
limitValueHigh = (int)(limitValue >> 32);
limitValueLow = (int)(limitValue & uint.MaxValue);
return result;
}
public KernelResult GetResourceLimitCurrentValue32([R(1)] int handle, [R(2)] LimitableResource resource, [R(1)] out int limitValueLow, [R(2)] out int limitValueHigh)
{
KernelResult result = _syscall.GetResourceLimitCurrentValue(handle, resource, out long limitValue);
limitValueHigh = (int)(limitValue >> 32);
limitValueLow = (int)(limitValue & uint.MaxValue);
return result;
}
public KernelResult GetResourceLimitPeakValue32([R(1)] int handle, [R(2)] LimitableResource resource, [R(1)] out int peakLow, [R(2)] out int peakHigh)
{
KernelResult result = _syscall.GetResourceLimitPeakValue(handle, resource, out long peak);
peakHigh = (int)(peak >> 32);
peakLow = (int)(peak & uint.MaxValue);
return result;
}
public KernelResult CreateResourceLimit32([R(1)] out int handle)
{
return _syscall.CreateResourceLimit(out handle);
}
public KernelResult SetResourceLimitLimitValue32([R(0)] int handle, [R(1)] LimitableResource resource, [R(2)] uint limitValueLow, [R(3)] uint limitValueHigh)
{
long limitValue = (long)(limitValueLow | ((ulong)limitValueHigh << 32));
return _syscall.SetResourceLimitLimitValue(handle, resource, limitValue);
}
public KernelResult FlushProcessDataCache32(
[R(0)] uint processHandle,
[R(2)] uint addressLow,
[R(3)] uint addressHigh,
[R(1)] uint sizeLow,
[R(4)] uint sizeHigh)
{
// FIXME: This needs to be implemented as ARMv7 doesn't have any way to do cache maintenance operations on EL0.
// As we don't support (and don't actually need) to flush the cache, this is stubbed.
return KernelResult.Success;
}
// Thread
public KernelResult CreateThread32(
[R(1)] uint entrypoint,
[R(2)] uint argsPtr,
[R(3)] uint stackTop,
[R(0)] int priority,
[R(4)] int cpuCore,
[R(1)] out int handle)
{
return _syscall.CreateThread(entrypoint, argsPtr, stackTop, priority, cpuCore, out handle);
}
public KernelResult StartThread32([R(0)] int handle)
{
return _syscall.StartThread(handle);
}
public void ExitThread32()
{
_syscall.ExitThread();
}
public void SleepThread32([R(0)] uint timeoutLow, [R(1)] uint timeoutHigh)
{
long timeout = (long)(timeoutLow | ((ulong)timeoutHigh << 32));
_syscall.SleepThread(timeout);
}
public KernelResult GetThreadPriority32([R(1)] int handle, [R(1)] out int priority)
{
return _syscall.GetThreadPriority(handle, out priority);
}
public KernelResult SetThreadPriority32([R(0)] int handle, [R(1)] int priority)
{
return _syscall.SetThreadPriority(handle, priority);
}
public KernelResult GetThreadCoreMask32([R(2)] int handle, [R(1)] out int preferredCore, [R(2)] out int affinityMaskLow, [R(3)] out int affinityMaskHigh)
{
KernelResult result = _syscall.GetThreadCoreMask(handle, out preferredCore, out long affinityMask);
affinityMaskLow = (int)(affinityMask & uint.MaxValue);
affinityMaskHigh = (int)(affinityMask >> 32);
return result;
}
public KernelResult SetThreadCoreMask32([R(0)] int handle, [R(1)] int preferredCore, [R(2)] uint affinityMaskLow, [R(3)] uint affinityMaskHigh)
{
long affinityMask = (long)(affinityMaskLow | ((ulong)affinityMaskHigh << 32));
return _syscall.SetThreadCoreMask(handle, preferredCore, affinityMask);
}
public int GetCurrentProcessorNumber32()
{
return _syscall.GetCurrentProcessorNumber();
}
public KernelResult GetThreadId32([R(1)] int handle, [R(1)] out uint threadUidLow, [R(2)] out uint threadUidHigh)
{
long threadUid;
KernelResult result = _syscall.GetThreadId(handle, out threadUid);
threadUidLow = (uint)(threadUid >> 32);
threadUidHigh = (uint)(threadUid & uint.MaxValue);
return result;
}
public KernelResult SetThreadActivity32([R(0)] int handle, [R(1)] bool pause)
{
return _syscall.SetThreadActivity(handle, pause);
}
public KernelResult GetThreadContext332([R(0)] uint address, [R(1)] int handle)
{
return _syscall.GetThreadContext3(address, handle);
}
// Thread synchronization
public KernelResult WaitSynchronization32(
[R(0)] uint timeoutLow,
[R(1)] uint handlesPtr,
[R(2)] int handlesCount,
[R(3)] uint timeoutHigh,
[R(1)] out int handleIndex)
{
long timeout = (long)(timeoutLow | ((ulong)timeoutHigh << 32));
return _syscall.WaitSynchronization(handlesPtr, handlesCount, timeout, out handleIndex);
}
public KernelResult CancelSynchronization32([R(0)] int handle)
{
return _syscall.CancelSynchronization(handle);
}
public KernelResult ArbitrateLock32([R(0)] int ownerHandle, [R(1)] uint mutexAddress, [R(2)] int requesterHandle)
{
return _syscall.ArbitrateLock(ownerHandle, mutexAddress, requesterHandle);
}
public KernelResult ArbitrateUnlock32([R(0)] uint mutexAddress)
{
return _syscall.ArbitrateUnlock(mutexAddress);
}
public KernelResult WaitProcessWideKeyAtomic32(
[R(0)] uint mutexAddress,
[R(1)] uint condVarAddress,
[R(2)] int handle,
[R(3)] uint timeoutLow,
[R(4)] uint timeoutHigh)
{
long timeout = (long)(timeoutLow | ((ulong)timeoutHigh << 32));
return _syscall.WaitProcessWideKeyAtomic(mutexAddress, condVarAddress, handle, timeout);
}
public KernelResult SignalProcessWideKey32([R(0)] uint address, [R(1)] int count)
{
return _syscall.SignalProcessWideKey(address, count);
}
public KernelResult WaitForAddress32([R(0)] uint address, [R(1)] ArbitrationType type, [R(2)] int value, [R(3)] uint timeoutLow, [R(4)] uint timeoutHigh)
{
long timeout = (long)(timeoutLow | ((ulong)timeoutHigh << 32));
return _syscall.WaitForAddress(address, type, value, timeout);
}
public KernelResult SignalToAddress32([R(0)] uint address, [R(1)] SignalType type, [R(2)] int value, [R(3)] int count)
{
return _syscall.SignalToAddress(address, type, value, count);
}
public KernelResult SynchronizePreemptionState32()
{
return _syscall.SynchronizePreemptionState();
}
}
}